Título: | IMAGE SEGMENTATION ON GPUS: A PARALLEL APPROACH TO REGION GROWING | ||||||||||||||||||||||||||||||||||||||||
Autor: |
PATRICK NIGRI HAPP |
||||||||||||||||||||||||||||||||||||||||
Colaborador(es): |
RAUL QUEIROZ FEITOSA - Orientador CRISTIANA BENTES - Coorientador |
||||||||||||||||||||||||||||||||||||||||
Catalogação: | 21/JUN/2013 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||||||||||||||||||||||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||||||||||||||||||||||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||||||||||||||||||||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=21699&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=21699&idi=2 |
||||||||||||||||||||||||||||||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.21699 | ||||||||||||||||||||||||||||||||||||||||
Resumo: | |||||||||||||||||||||||||||||||||||||||||
Lately, orbital sensors of high spatial resolution are providing an increasing
amount of data about the Earth surface. Analysis of these data implies in a high
computational load, which has motivated researches on more efficient hardware
and software for these applications. In this context, an important issue lies in the
image segmentation that involves long processing times and is a key step in object
based image analysis. The recent advances in modern programmable graphics
units or GPUs have opened the possibility of exploiting the parallel processing
capabilities to improve the segmentation performance. This work presents a
parallel version of the multicriterion segmentation algorithm, introduced
originally by Baatz and Schappe (2000), implemented in a GPU. The underlying
hardware architecture consists of a massive parallel system with multiple
processing elements designed especially for image processing. The parallel
algorithm is based on processing each pixel as a different thread so as to take
advantage of the fine-grain parallel capability of the GPU. In addition to the
parallel algorithm, this dissertation also suggests a modification to the
heterogeneity computation that improves the segmentation performance. The
experiments under the proposed parallel algorithm present a speedup greater than
7 in relation to the sequential version.
|
|||||||||||||||||||||||||||||||||||||||||
|