Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Título: NUMERICAL SOLUTIONS FOR EIGENPROBLEMS ASSOCIATED TO SYMMETRIC OPERATORS
Autor: PAULO ROBERTO GARDEL KURKA
Colaborador(es): CARLOS ALBERTO DE ALMEIDA - Orientador
Catalogação: 29/AGO/2012 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=20274&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=20274&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.20274
Resumo:
A vector iterative technique is developed for the extraction of eigenpairs related to the solution of finite element problems. The algorithm consists of using inverse iteration and conjugate gradient methods so as to obtain the solution vector associated to the smallest eigenvalue. Eigensolutions are sequentially calculated by replacing the coefficient matrix in the problem equilibrium equation using a deflation technique. The extensive usage of this technique, introduces multiple eigenvalue in the coefficient matrix, requiring a procedure to combine both methods. Also, a study is performed to find the appropriate starting vector to be used with methods. The algorithm has been implemented and the results of some example solutions are given that yield insight into its predictive capabilities.
Descrição: Arquivo:   
COMPLETE PDF