Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Título: AN INTRODUCTION TO THE DYNAMICS OF MULTIBODY SYSTEMS
Autor: MARCELO AREIAS TRINDADE
Colaborador(es): RUBENS SAMPAIO FILHO - Orientador
Catalogação: 18/SET/2001 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=1950&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=1950&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.1950
Resumo:
This work intends to present an introduction to the Dynamics of Multibody Systems, with rigid and flexible bodies, by presenting the following stages: Modelization, Control and Simulation. The modelization of multibody systems is presented, exploring finite rotation parametrization, description of deformation of the flexible bodies and symbolic derivation of the equations of motion. Finite rotations parametrization is presented using classical systems of parametrization such as Euler`s and Bryant`s angles, Euler`s and Rodrigues` parameters and conformal rotation vector, rotation vector and quaternions. The problem of singularity of parametrization is studied by the comparison of the various systems of parametrization. The method of assumed modes is presented to describe the deformation of flexible bodies. The formulation of the equations of motion is done using Lagrange`s and Maggi-Kane`s equations. The equations of motion are derived using the MATLAB`s Symbolic Math Toolbox. The state-space linear control of multibody systems is presented. Two different methods are presented to design the control system: eigenvalues imposition and optimal control. The simulation of some numerical examples of multibody systems is presented. An analysis of the integration methods is done. All the computations are done in MATLAB, using the Symbolic Math Toolbox functions to the modelization, the Control Toolbox to the control and the OdeSuite to the integration of the equations of motion.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS PDF      
INTRODUCTION PDF      
CHAPTER 2 PDF      
CHAPTER 3 PDF      
CHAPTER 4 PDF      
CHAPTER 5 PDF      
PDF      
CHAPTER 6 PDF      
CHAPTER 7 PDF      
PDF