Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Título: DEVELOPMENT OF FIBER OPTIC ACOUSTIC SENSOR FOR ULTRASONIC FLOWMETER
Autor: WAGNER MUNDY VALVERDE FILHO
Colaborador(es): ARTHUR MARTINS BARBOSA BRAGA - Orientador
LUIZ CARLOS GUEDES VALENTE - Orientador
Catalogação: 26/MAR/2012 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=19330&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=19330&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.19330
Resumo:
This thesis reports the steps that have led to the assemblage and testing of na optical fiber microphone. This is part of a greater effort directed towards the development a sonic flowmeter based on optical fiber technology. In this first phase of the project, focus has been placed on the conception, construction, and testing, of the acoustic receiver first prototype. This transducer will be responsible for capturing the acouustical signails sent by an emitter, also based on optical fiber technology, and which is yet to be developed. In constrast with conventional sonic flowmeters, in which time of flight of acoustical pulses is the measured quantity related to flow rate, we are proposing a system based on measurement of phase difference between emitted and received sinusoidal signals.Hence, the acoustic receiver has been conceived to operate in a narrow frequency band. In particular, the developed prototype has been designed to operate in a frequency band centered at 3.2 kHz. This choice has been dictated by the response of the optoeletronic circuit employed in tests performed with the receiver operating in air and water. Nevertheless, since the principle of operation has been measurement of acoustical signails in higher frequency bands.
Descrição: Arquivo:   
COMPLETE PDF