Título: | NUMERICAL REPRESENTATION OF THIN AXISYMMETRIC SHELLS UNDER A GENERAL LOADING WITH AN UNI-DIMENSIONAL MODEL | ||||||||||||
Autor: |
PETER TANSCHEIT |
||||||||||||
Colaborador(es): |
CARLOS ALBERTO DE ALMEIDA - Orientador |
||||||||||||
Catalogação: | 08/FEV/2012 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=19142&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=19142&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.19142 | ||||||||||||
Resumo: | |||||||||||||
This work deals with the formulation of a uni-dimentional finite element model for the analysis of linear isotropic thin axisymmetric shells undergoing general loading but with static and isothermal behaviou
The Shell geometry and displacements are defined at a variable number of nodal points(Max.4) throughout the centre line of the Shell in the longitudinal direction. The isoparametric formulation is used and the kinematics of deformation is represented by three displacement degress-of-freedom defined ate the shell´s mid-surface. Displacement and rotation dregress-of-freedom cupling is obtained by employing Love´s kinematics conditions for thin shells. Conditions of continuity between elements or coupling of na element to a flange is guaranteed by a penalty procedure.
The element formulation includes linear and angular strains in a plane parallel to the mid-surface obtained in the directions of the Shell principal curvatures.
General periodic loading is incorporated in the analysis by expading its expression in Fourier series in the circunferential direction and by representing the corresponding displacements also by a periodic expansion, using generalized degress-of-freedom.
Numerical solutions associated to structures represented by the proposed model are compared to other analytic and/ or numerical results in the literature, to demonstrate the element model applicability in general axisymetric Shell analysis.
|
|||||||||||||
|