Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Título: THEORETICAL AND EXPERIMENTAL INVESTIGATION ON ELECTROSTATIC PRECIPITATION
Autor: JOSE SIMOES BETTHOUD
Colaborador(es): MARCOS SEBASTIAO DE PAULA GOMES - Orientador
Catalogação: 17/JAN/2012 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=18993&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=18993&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.18993
Resumo:
This work integrates a numerical solution, obtained by finite elements and characteristic methods applied to the governing equations of the electrical conditions in the inter-electrodes region of a wire-plate Eletrostatic Precipitador (EP), with data acquired in a precipitation channel with the same geometric form. The integration above mentioned is demanded by any attempt of an analytical project of an EP due to the introduction of a paramenter, denominated mobility of the charge carriers, in the closure of the governing equations. Further, the analytical solutions are in general obtained under the modeling of a precipitation region provided with a small number of corona wires, just enough to give simetry considerations. It must be kept in mind that in an EP each channel is provided with dozens of corona wires. The simplification above interdicts the crucial observation that the precipitation phenomena in an EP suffers physical changes along the axial length of the channel, due to the continuos wuthdrawing of particulate material from the total load. Solutions apropiated to a single region are so not very useful to the project of an entire channel. In this work we present an experimental apparatus which allows the measurement of eletric currents in discrete areas of the colleting plates. The apparatus is provided with a number of corona wires that can simulate a channel of an EP. Using the values of the currents measured at each of thediscrete plates it is obtained a value for the electrical mobility associated to discrete regions longitudinally with the flow. A dimensionless mobility is then obtained in terms of some parameters. In the present work these parameters were restricted to the applied potential. It is then suggested how an EP projectist could use the method as a tool for helping in the design process. It was observed that the eletric field originated in each of the corona wires acts alternatedely accelerating or desaccelerating the charged particulate load, pespectively in the regions immediately after or before each corona wire, with respect to the main direction of the flow. This physical phenomena, not mentioned in any of the references of the present work, was denomitade here as alternation effect, and has fundamental importance in the use of the dimensionless mobility as a project tool and also in the possibilities of upgrading Eps already in use.
Descrição: Arquivo:   
COMPLETE PDF