Título: | ACTIVE NONLINEAR CONTROL OF VIBRATIONS IN FLEXIBLE STRUCTURES | ||||||||||||
Autor: |
OSVALDO CASERES PINTO |
||||||||||||
Colaborador(es): |
PAULO BATISTA GONCALVES - Orientador |
||||||||||||
Catalogação: | 24/AGO/2001 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=1886&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=1886&idi=2 [es] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=1886&idi=4 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.1886 | ||||||||||||
Resumo: | |||||||||||||
The present thesis studies a strategy for the active non-
linear control of dynamically loaded flexible structures.
The control method is based on the non-linear optimal
control theory using state feedback and the solution of the
non-linear optimal control problem is obtained by
representing system non-linearities and performance indices
by power series with the help of algebraic tensor theory.
General polynomial representations of the non-linear
control law are obtained up to the fifth order.
This methodology is applied to systems with quadratic and
cubic nonlinearities, capable of representing most of the
elements usually used in civil and mechanical engineering
structures, such as beams, plates, shells and arcs. Control
gains up to the third order are analytically derived and
the effect of the control forces on the system is studied.
Special emphasis is placed on systems susceptible to
chaotic vibrations, escape from a potential well
and dynamic jumps.
Several examples are provided to illustrate the control
approach. Strongly nonlinear systems subjected to free
vibration, simple harmonic excitations, impact and ground
acceleration are tested. The variation of the dynamic
buckling load with the degree of the control algorithms is
studied for the problem of structures with two potential
wells, one of them corresponding to a post-buckling
equilibrium position. The effect of time delay on
controlled systems is studied analytically and numerically.
The studied methodology is also applied to control the
oscillations of simply supported buckled beams, in order to
mitigate the effects of dynamic loading on the vibration
amplitudes and prevent dangerous instability
phenomena.
|
|||||||||||||
|