Título: | CALCULUS OF AFFINE STRUCTURES AND APPLICATIONS FOR ISOSURFACES | |||||||
Autor: |
MARIA DE ANDRADE COSTA E SILVA |
|||||||
Colaborador(es): |
THOMAS LEWINER - Orientador |
|||||||
Catalogação: | 04/OUT/2011 | Língua(s): | PORTUGUESE - BRAZIL |
|||||
Tipo: | TEXT | Subtipo: | THESIS | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=18414&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=18414&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.18414 | |||||||
Resumo: | ||||||||
Differential Geometry provides a set of measures invariant under a set of
transformations, in particular rigid, affine, and projective. The invariants
by rigid motions are using almost all applications of computer graphics
and geometric modeling. The affine case, since it is more general, allows to
extend these tools. In this work, geometric properties are presented in the
case of parametric or implicit surfaces, in particular the affine metric, the conormal
and normal vectors, and the affine Gaussian and mean curvatures.
Some usual results of Euclidean geometry, as the Minkowski formula, are
extended for the affine case. This study allows to define estimators of affines
structure in the case of isosurfaces. Although, the direct calculation of
these structures greatly increases the number of operations and numerical
instabilities. A geometrical reduction is proposed obtaining a much simpler
and numerical stabler formulae. The geometrical properties are incorporated
in the Marching Cubes algorithms, then they are analyzed and discussed.
|
||||||||