Título: | TARGET TRACKING SYSTEM MOUNTED IN A MOVING BODY | ||||||||||||||||||||||||||||||||||||||||
Autor: |
MAURICIO GRUZMAN |
||||||||||||||||||||||||||||||||||||||||
Colaborador(es): |
HANS INGO WEBER - Orientador LUCIANO LUPORINI MENEGALDO - Coorientador |
||||||||||||||||||||||||||||||||||||||||
Catalogação: | 23/MAI/2011 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||||||||||||||||||||||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||||||||||||||||||||||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||||||||||||||||||||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=17533&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=17533&idi=2 |
||||||||||||||||||||||||||||||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.17533 | ||||||||||||||||||||||||||||||||||||||||
Resumo: | |||||||||||||||||||||||||||||||||||||||||
A study on a pan-tilt type target tracking system actuated by permanent
magnet DC motors and assembled in a moving body is presented in this work. To
achieve such objective, an experimental test bed is constructed and a simulation
program is implemented. The mechanical model is derived and simulated in time
domain. This approach allows using accurate non-linear equations to represent
system behavior, otherwise infeasible in frequency domain. Although the system
is modeled with rigid bodies, flexibility and structural damping due to the
gearboxes are considered. Sensor errors, backlash in the gearboxes, dry and
viscous friction, saturation limits for armature current and tension of the motors
are also considered. A method to include the time delays for the control signal
updates, as well as time delays due to sensor dynamic response, during the
numerical integration of the equations of motion, is presented. Controllers that
require no mathematical model of the plant are employed in the experimental test
bed and in the simulation program. Three different control architectures are
proposed, called in this work type 1, type 2 and type 3. Their complexity increases
depending on the number of available sensors. The type 1 is applied to systems
with only one sensor that provides the targets angular azimuth and elevation
errors. If, besides this sensor, sensors to measure the relative angular positions
between the mechanism links are available type 2 architecture is used. In addition,
if sensors to measure inertial angular speeds are also available, type 3 architecture
can be used. Finally, experimental and numerical results, comparing system
performance with each control architecture are presented.
|
|||||||||||||||||||||||||||||||||||||||||
|