Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: THE GENERALIZATION OF THE RICCATI EQUATION AND SINGULARITIES OF ITS POINCARÉ MAP
Autor: JOAO PAULO ROQUIM ROMANELLI
Colaborador(es): NICOLAU CORCAO SALDANHA - Orientador
Catalogação: 28/ABR/2011 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=17375&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=17375&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.17375
Resumo:
The generalization of the Riccati equation studied in this work is z′(t) = z(t)n + an−1(t)z(t)n−1 + . . . + a1(t)z(t) + a0(t). The Advance Map takes za at zb if the initial value problem, with z(a) = za, has a solution defined on [a, b] with z(b) = zb. When a=0 and b=1 the Advance Map is known as Poincará Map. The singular set is the subset of the Riemann sphere containing the singularities of the advance map. In generic case, the singular set is the union of curves witha number finite discontinuities: corresponding solutions that reach infinity at least twice. As a consequence will be presented a method, based on configuration set singular, to determine the number of periodic solutions. A family of non-automous equations whose Poincaré Map is the Identity in a non-empty open subset of the complex plane will be presented.
Descrição: Arquivo:   
COVER, DEDICATION, THANKS, RESUMO, ABSTRACT, SUMMARY, EPIGRAPH PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
REFERENCES PDF