Título: | A KNOWLEDGE-BASED APPROACH FOR AUTOMATIC INTERPRETATION OF MULTIDATE REMOTE SENSING DATA | |||||||
Autor: |
GILSON ALEXANDRE OSTWALD PEDRO DA COSTA |
|||||||
Colaborador(es): |
RAUL QUEIROZ FEITOSA - Orientador |
|||||||
Catalogação: | 15/SET/2009 | Língua(s): | ENGLISH - UNITED STATES |
|||||
Tipo: | TEXT | Subtipo: | THESIS | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=14130&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=14130&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.14130 | |||||||
Resumo: | ||||||||
The general objective of this research was the development of knowledgebased
computational techniques to support the interpretation of multitemporal
remote sensing data, focusing on the investigation of the explicit representation of
temporal knowledge and its integration to other types of knowledge; and also on
the processing and acquisition of temporal knowledge. Two interrelated, specific
objectives were pursued: (i) the development of a novel multitemporal
classification method based on the concept of fuzzy Markov chain (FMC) that
provides for the automatic estimation of its temporal related parameters and for
the exploration of temporal knowledge in the classification process; and (ii) the
design and implementation of an open-source, knowledge-based framework for
multitemporal interpretation of remote sensing data. In order to validate the new
multitemporal classification method, experiments were carried out aiming at the
interpretation of a sequence of three LANDSAT images from the central region of
Brazil, using both a stochastic and an analytical technique to estimate the class
transition possibilities that compose the FMC model. While the monotemporal
classifiers used in the experiments attained an average class accuracy of
approximately 55%, the multitemporal scheme reached accuracies between 65%
and 94%. Similar results in terms of overall accuracy were also observed.
Furthermore, when compared to two alternative multitemporal classification
approaches, the devised method consistently showed better results. In order to
validate the proposed multitemporal framework, the FCM-based method was
implemented using its temporal functionalities, and a number of experiments in
which different variants of the FCM-based method were structured through the
framework were successfully carried out.
|
||||||||