Título: | AUTONOMIC PARALELIZATION OF METAHEURISTICS IN COMPUTATIONAL GRIDS | |||||||
Autor: |
ALETEIA PATRICIA FAVACHO DE ARAUJO |
|||||||
Colaborador(es): |
CELSO DA CRUZ CARNEIRO RIBEIRO - Orientador EUGENE FRANCIS VINOD REBELLO - Coorientador |
|||||||
Catalogação: | 15/AGO/2008 | Língua(s): | PORTUGUESE - BRAZIL |
|||||
Tipo: | TEXT | Subtipo: | THESIS | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=12077&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=12077&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.12077 | |||||||
Resumo: | ||||||||
The development of autonomic parallel metaheuristics to be
efficiently executed in computational grid is the challenge
of this thesis. The parallel application must be able to
self-adjust to the changes that occur dynamically
in the environment, without the user needing to interfere
directly in the code of the application. For this, the
autonomic metaheuristic should be seen as an application on
two independent levels: middleware and strategy.
The middleware is responsible for managing the entire
execution environment, according to the characteristics of
the application. The distributed hierarchical strategy
enables the cooperation between all processes involved,
without degrading the performance of the application due to
increased communication between processes. To validate this
proposal, two parallel implementations of metaheuristics
were developed, one for the mirrored traveling
tournament problem and the other for the diameter
constrained minimum spanning tree problem. For both
problems, the developed implementations were tested in the
grid Synergy environment, formed by machines located
in three different cities in the state of Rio de Janeiro.
The paralelizations improved, for several instances, the
best known results in the literature.
|
||||||||