Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: SANDSTONE SEISMIC MODELING: EFFECTS OF VELOCITY DISPERSION AND FLUID TYPE
Autor: OLGA CECILIA CARVAJAL GARCIA
Colaborador(es): SERGIO AUGUSTO BARRETO DA FONTOURA - Orientador
Catalogação: 11/JUL/2008 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=11890&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=11890&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.11890
Resumo:
The evaluation of reservoir dynamics during production through time-lapse interpretation has reached a substantial importance in the petroleum industry, mainly in sandstones. This evaluation presents many challenges, mainly concerned to unmask the overlapping of different effects in seismic data due to reservoir changes. Several factors affect seismic properties and saturation is one of the most important. This property influences the rock bulk modulus and seismic response and also causes a velocity dependence on the frequency. This phenomenon is known as velocity dispersion. Furthermore, the transition from effective homogeneous fluid to heterogeneous saturation represents a dispersion mechanism that appears for seismic frequencies in situ in sandstones. The most commonly method used to perform the fluid substitution technique is based in Gassmann theory (1951). This approach considers a static porous media (isostress condition), where fluid is not affected by wave propagation. However, it is well known that acoustic velocities in fluid saturated rocks depends on frequency, according to fluid type and distribution on porous media, viscosity, and others properties that become waves dispersive. In this work reservoir flow-simulation, rock physics transformations, upscaling and seismic modeling were performed in gas injection scenarios. Synthetic seismograms and some contrast sections were generated using Gassmann (1951) and Mavko & Jizba (1991) substitution theories. The goal is to clarify the relevance of considering velocity dispersion on time-lapse seismic analyzing possible differences in the seismic parameters. Results show that seismic response could increase in 15% when squirt flow dispersion is considered. Porosity and tortuosity are essential parameters to analyze seismic response.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
CHAPTER 6 PDF    
REFERENCES AND APPENDICES PDF