Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: CYCLIC MINIMAL SURFACES IN R3, S2 X R AND H2 X R
Autor: LEANDRO TAVARES DA SILVA
Colaborador(es): HENRI NICOLAS GUILLAUME ANCIAUX - Orientador
Catalogação: 06/MAR/2008 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=11422&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=11422&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.11422
Resumo:
In this work we describe minimal surfaces embedded in product spaces M x R, where M = R2, S2 and H2 which are foliated by geodesics (ruled surfaces) and curves of M with constant curvature (cyclic surfaces). In R2 x R, i.e. R3, we shall prove that there exist only two minimal cyclic surfaces which are the catenoid and the Riemann example. Then we characterize minimal cyclic surfaces in S2 x R; they form a two-parameter family. Finally we exhibit three two-parameter families of minimal cyclic surfaces in H2 x R.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT AND SUMMARY PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
REFERENCES PDF