Título: | REORGANIZATION AND COMPRESSION OF SEISMIC DATA | ||||||||||||||||||||||||||||||||
Autor: |
FLAVIA MEDEIROS DOS ANJOS |
||||||||||||||||||||||||||||||||
Colaborador(es): |
EDUARDO SANY LABER - Orientador PEDRO MARIO CRUZ E SILVA - Coorientador |
||||||||||||||||||||||||||||||||
Catalogação: | 19/FEV/2008 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||||||||||||||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||||||||||||||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||||||||||||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=11337&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=11337&idi=2 |
||||||||||||||||||||||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.11337 | ||||||||||||||||||||||||||||||||
Resumo: | |||||||||||||||||||||||||||||||||
Seismic data, used mainly in the petroleum industry,
commonly present
sizes of tens of gigabyte, and, in some cases, hundreds.
This work presents
propositions for manipulating these data in order to help
overcoming the
problems that application for seismic processing and
interpretation face while
dealing with file of such magnitude. The propositions are
based on reorganization
and compression. The knowledge of the format in which the
data will
be used allows us to restructure storage reducing disc-
memory transference time
up to 90%. Compression is used to save storage space. For
data of such nature,
best results in terms of compression rates come from
techniques associated to
information loss, being clustering one of them. In this
work we present an
algorithm for minimizing the cost of clustering a set of
data for a pre-determined
number of clusters. Seismic data have space coherence that
can be used to
improve their compression. Combining clustering with the
use of space
coherence we were able to compress sets of data with rates
from 7% to 25%
depending on the error associated. A new file format is
proposed using reorganization
and compression together.
|
|||||||||||||||||||||||||||||||||
|