Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: SQLLOMINING: FINDING LEARNING OBJECTS USING MACHINE LEARNING METHODS
Autor: SUSANA ROSICH SOARES VELLOSO
Colaborador(es): RUBENS NASCIMENTO MELO - Orientador
Catalogação: 04/DEZ/2007 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=10970&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=10970&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.10970
Resumo:
Learning Objects (LOs) are pieces of instructional material like traditional texts that can be reused in the composition of more complex objects like classes or courses. There are some difficulties in the process of LO reutilization. One of them is to find pieces of documents that can be used like LOs. In this work we present a process that, in search for LOs, starts by extracting, transforming and loading a text database and then continue clustering these texts, using a machine learning methods that combines EM (Expectation- Maximization) and a Bayesian classifier. We implemented that process in a system called SQLLOMining that uses the SQL language and text mining methods in the search for LOs.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
CHAPTER 6 PDF    
CHAPTER 7 PDF    
REFERENCES AND APPENDICES PDF