Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: GPU-BASED PARTICLE SIMULATION WITH COLLISION HANDLING
Autor: JERONIMO SILVERIO VENETILLO
Colaborador(es): WALDEMAR CELES FILHO - Orientador
Catalogação: 31/AGO/2007 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=10474&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=10474&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.10474
Resumo:
This work presents a new proposal for the implementation of a GPU-based particle system. The simulation runs entirely on the graphic processor, thus eliminating data transfer between the CPU and the GPU. The proposed system is able to simulate particles with different diameters in confined environments, including support for inter-particle collisions, constraints, and particle-obstacle collisions. Inter-particle collision detection is accomplished by subdividing the space into a regular grid of cells. On modern graphics cards, the system is able to simulate up to one million particles at interactive rate. It is also proposed a flexible approach for modeling the obstacles that define the environment, allowing the creation of different scenes without relying on shader re-coding. The system is divided in different shaders responsible for each stage of the simulation. One fragment program is responsible to advance the particles in time. After that a vertex program builds the space subdivision structure. The following stages (collision detection and response, and constraint solving) are performed only by fragment programs using the relaxation method.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
CHAPTER 6 PDF    
CHAPTER 7 PDF    
REFERENCES PDF