Título: | PATTERN DETECTION IN BIDIMENSIONAL IMAGENS: CASES STUDY | ||||||||||||||||||||
Autor: |
GUILHERME LUCIO ABELHA MOTA |
||||||||||||||||||||
Colaborador(es): |
RAUL QUEIROZ FEITOSA - Orientador SIDNEI PACIORNIK - Coorientador |
||||||||||||||||||||
Catalogação: | 10/NOV/2005 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=7469&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=7469&idi=2 |
||||||||||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.7469 | ||||||||||||||||||||
Resumo: | |||||||||||||||||||||
This dissertation studies two pattern detection problems
in images with complex background, in which standard
segmentation techniques do not provide good results: the
detection of structural units (SU`s) in images obtained
through High resolution transmission Electron Microscopy
and the detection of frontal human faces in images.
The methods employed in the solution of both
problems have many similarities - a neighborhood operator,
basically composed of pre-processing, dimensionality
reduction and classification steps, scans the input image
searching for the patterns of interest.
For SU detection three dimensionality reduction
methods - Principal Component Analysis (PCA), PCA of the
balanced training set (PACEq), and a new method, axis that
maximize the distance to a given class centroid
(MAXDIST) -, and two classifiers - Euclidean Distance
(EUC) and back-propagation neural network (RN). The
MAXDIST/EUC combination, with just one component, provided
a detection rate of 82% with less false detections.
For face detection a new approach was employed,
using a back-propagation neural network as classifier. It
takes as input a representation in the so-called face
space and the reconstruction error (DFFS). In comparison
with benchmark results from the literature, the proposed
method reached similar detection rates.
|
|||||||||||||||||||||
|