Título: | IMAGE BASED SIMULATION METHODS FOR DEPOSITIONAL SYSTEMS MODELING | ||||||||||||
Autor: |
VIVIANA LORENA VARGAS GRAJALES |
||||||||||||
Colaborador(es): |
SINESIO PESCO - Orientador |
||||||||||||
Catalogação: | 12/FEV/2019 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36783&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36783&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.36783 | ||||||||||||
Resumo: | |||||||||||||
In this work, we present two geostatistical methods to model geological structures that exhibit directional features in a tree structure, like fan deltas and turbidite channels. The first method is a multiple point geostatistical algorithm called directional field-based simulation (DIR-SIM). The directional feature of the training image is used to create a new object that we call training directional field (TDF), which contains the direction in each point of the image. This TDF represents the training image in a broader sense because both the training image and the direction followed by the reservoir are contained there. We propose to apply this object as a fundamental tool in the simulation. The second method is an object- based simulation called SKE-SIM which uses a training image to extract the distribution of selected parameters to build the turbidite channel system. The idea is based on the premise that the training image can be well represented by a one-dimensional object that we call, skeleton.
|
|||||||||||||
|