Título: | VISUAL INTERACTIVE SUPPORT FOR SELECTING SCENARIOS FROM TIME-SERIES ENSEMBLES | ||||||||||||
Autor: |
GUILHERME GONCALVES SCHARDONG |
||||||||||||
Colaborador(es): |
HELIO CORTES VIEIRA LOPES - Orientador SIMONE DINIZ JUNQUEIRA BARBOSA - Coorientador |
||||||||||||
Catalogação: | 14/DEZ/2018 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=35864&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=35864&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.35864 | ||||||||||||
Resumo: | |||||||||||||
Stochastic programming and scenario reduction approaches have become invaluable in the analysis and behavior prediction of dynamic systems. However, such techniques often fail to take advantage of the user s own expertise about the problem domain. This work provides visual interactive support to assist users in solving the scenario reduction problem with timeseries data. We employ a series of time-based visualization techniques linked together to perform the task. By adapting a multidimensional projection algorithm to handle temporal data, we can graphically present the evolution of the ensemble. We also propose to use cumulative bump charts to visually compare the ranks of distances between the ensemble time series and a baseline series. To evaluate our approach, we developed a prototype application and conducted observation studies with volunteer users of varying backgrounds and levels of expertise. Our results indicate that a graphical approach to scenario reduction may result in a good subset of scenarios and provides a valuable tool for data exploration in this context. The users liked the interaction mechanisms provided and judged the task to be easy to perform with the tools we have developed. We tested the proposed approach against state-of-the-art techniques proposed in the literature and used in the industry and obtained good results, thus indicating that our approach is viable in a real-world scenario.
|
|||||||||||||
|