Título: | EFFECTIVE STOCHASTIC DYNAMICS OF SIMPLIFIED PROTEIN SEQUENCES | ||||||||||||
Autor: |
CARLOS ENRIQUE OLIVARES RODRIGUEZ |
||||||||||||
Colaborador(es): |
CELIA BEATRIZ ANTENEODO DE PORTO - Orientador |
||||||||||||
Catalogação: | 30/OUT/2014 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=23611&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=23611&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.23611 | ||||||||||||
Resumo: | |||||||||||||
Proteins and other peptides are aminoacid chains that perform
specific biological functions within an organism. The functionality of
these structures depends on their three-dimensional organization, so it
is important to determine what are the factors that control the proper
folding. If the sequence is known, in principle it would be possible to
predict its 3D structure by means of molecular dynamics of all atoms of
the sequence and the surrounding water molecules, but it is clear that this
type of simulation is not feasible with the current computational resources.
Alternatively, we consider simplified models that take into account only the
main characteristics of each monomer and the particles of the medium. We
have performed molecular dynamics simulations, considering the LennardJones-like
interactions between monomers (distinguishing between polar
and hydrophobic monomers) and additionally incorporating a stochastic
(Langevin) force to complement the influence of the aqueous medium. We
considered several linear sequences, symmetric, with fixed-length, evolving
in the tri or bi-dimensional space. As a result of these simulations, we
can describe the temporal evolution in the space of conformations through
effective variables or reaction coordinates, such as gyration radius, distance
between ends or number of contacts between unbound monomers. From
the analysis of the time series of the effective variables, we extract the
coefficients that allow to build the stochastic differential equation of motion
of the effective variables or its associated Fokker-Planck equation. These
equations for a limited number of degrees of freedom provide, in principle,
information on conformational changes, which are difficult to access in
the description of the original, high dimensional, phase. We discuss the
advantages and limitations of this approach.
|
|||||||||||||
|