Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: USING REINFORCEMENT LEARNING ON WEB PAGES REVISITING PROBLEM
Autor: EUGENIO PACELLI FERREIRA DIAS JUNIOR
Colaborador(es): EDUARDO SANY LABER - Orientador
Catalogação: 14/JUN/2012 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=19637&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=19637&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.19637
Resumo:
In the Internet, the information we desire is usually spread over different locations. For some applications, it is necessary to maintain local copies of this information. Keeping consistency as well as freshness of a data base, or more specifically a set of internet web pages, is a task systematically studied. An approach to this problem is the use of reinforcement learning techniques, using dynamic programming and stochastic analysis to obtain a good rescheduling policy for the web pages copies. This work is proposed to validate the use of reinforcement learning techniques over this problem, as well as finding features of the problem useful to model the developed solution.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
CHAPTER 6 PDF    
REFERENCES PDF