Título: | A GRAPH-MINING BASED METHOD FOR SEGMENTATION AND COUNTING OF LOCAL MAXIMUM CLUSTERS IN DIGITAL IMAGES | ||||||||||||||||||||||||||||||||
Autor: |
GEISA MARTINS FAUSTINO |
||||||||||||||||||||||||||||||||
Colaborador(es): |
MARCELO GATTASS - Orientador CARLOS JOSE PEREIRA DE LUCENA - Coorientador |
||||||||||||||||||||||||||||||||
Catalogação: | 19/AGO/2011 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||||||||||||||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||||||||||||||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||||||||||||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=18110&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=18110&idi=2 |
||||||||||||||||||||||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.18110 | ||||||||||||||||||||||||||||||||
Resumo: | |||||||||||||||||||||||||||||||||
A grayscale image can be viewed as a topological surface and this way, objects
of interests may appear as peaks (sharp mountains), domes (smooth hills) or
valleys (V- or U-shaped). Generally, the dome top presents more than one local
maximum. Thus, it can be characterized by a local maximum cluster. Segmenting
objects individually in images where they appear partially or totally fused is
a problem which frequently may not be solved by a watershed segmentation
or a basic morphological processing of images. Other issue is counting similar
objects in images segmented beforehand. Counting them manually is a tedious
and time-consuming task, and its subjective nature can lead to a wide variation
in the results. This work presents a new method for segmenting and counting
of local maximum clusters in digital images through a graph-based approach.
Using the luminance information, the image is represented by a region adjacency
graph and a graph-mining algorithm is applied to segment the clusters. Finally,
according to image characteristics, a graph-clustering algorithm can be added
to the process to improve the final result. The object counting step is a direct
result from the mining algorithm and the clustering algorithm, when the latter
is applied. The proposed method is tolerant to variations in object size and
shape and can easily be parameterized to handle different image groups resulting
from distinct objects. Tests made on a database with 262 images, composed of
photographs of objects (group 1) and embryonic stem cells under fluorescence
microscopy images (group 2), attest the effectiveness and quality of the proposed
method as for segmentation and counting purpose. The images form group 1
processed by our method were checked by the author and those ones from group
2 by the specialists from the Institute of Biomedical Sciences at UFRJ. For these
images we obtained an average F-measure of 85.33% and 90.88%, respectively.
Finally, a comparative study with the widely used watershed algorithm was done.
The watershed achieved an average F-measure of 74.02% e 78.28% for groups 1
and 2, respectively, against 85.33% e 91.60% obtained by our method.
|
|||||||||||||||||||||||||||||||||
|