Título: | ARTIFICIAL NEURAL NETWORK MODELING FOR QUALITY INFERENCE OF A POLYMERIZATION PROCESS | ||||||||||||||||||||||||||||||||||||
Autor: |
JULIA LIMA FLECK |
||||||||||||||||||||||||||||||||||||
Colaborador(es): |
MARCELO DE ANDRADE DREUX - Orientador BELKIS VALDMAN - Coorientador |
||||||||||||||||||||||||||||||||||||
Catalogação: | 26/JAN/2009 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||||||||||||||||||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||||||||||||||||||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||||||||||||||||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=12980&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=12980&idi=2 |
||||||||||||||||||||||||||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.12980 | ||||||||||||||||||||||||||||||||||||
Resumo: | |||||||||||||||||||||||||||||||||||||
This work comprises the development of a neural network-
based model for quality inference of low density
polyethylene (LDPE). Plant data corresponding to
the process variables of a petrochemical company`s LDPE
reactor were used for model development. The data were
preprocessed in the following manner: first,
the most relevant process variables were selected, then
data were conditioned and normalized. The neural network-
based model was able to accurately predict the
value of the polymer melt index as a function of the
process variables. This model`s performance was compared
with that of two mechanistic models
developed from first principles. The comparison was made
through the models` mean absolute percentage error, which
was calculated with respect to experimental values of the
melt index. The results obtained confirm the neural
network model`s ability to infer values of quality-related
measurements of the LDPE reactor.
|
|||||||||||||||||||||||||||||||||||||
|