Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: APRENDIZADO DE MÁQUINA PARA O PROBLEMA DE SENTIMENT CLASSIFICATION
Autor: PEDRO OGURI
Colaborador(es): RUY LUIZ MILIDIU - Orientador
Catalogação: 18/MAI/2007 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=9947&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=9947&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.9947
Resumo:
Sentiment Analysis é um problema de categorização de texto no qual deseja-se identificar opiniões favoráveis e desfavoráveis com relação a um tópico. Um exemplo destes tópicos de interesse são organizações e seus produtos. Neste problema, documentos são classificados pelo sentimento, conotação, atitudes e opiniões ao invés de se restringir aos fatos descritos neste. O principal desafio em Sentiment Classification é identificar como sentimentos são expressados em textos e se tais sentimentos indicam uma opinião positiva (favorável) ou negativa (desfavorável) com relação a um tópico. Devido ao crescente volume de dados disponível na Web, onde todos tendem a ser geradores de conteúdo e expressarem opiniões sobre os mais variados assuntos, técnicas de Aprendizado de Máquina vem se tornando cada vez mais atraentes. Nesta dissertação investigamos métodos de Aprendizado de Máquina para Sentiment Analysis. Apresentamos alguns modelos de representação de documentos como saco de palavras e N-grama. Testamos os classificadores SVM (Máquina de Vetores Suporte) e Naive Bayes com diferentes modelos de representação textual e comparamos seus desempenhos.
Descrição: Arquivo:   
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS PDF    
CAPÍTULO 1 PDF    
CAPÍTULO 2 PDF    
CAPÍTULO 3 PDF    
CAPÍTULO 4 PDF    
CAPÍTULO 5 PDF    
CAPÍTULO 6 PDF    
CAPÍTULO 7 PDF    
REFERÊNCIAS BIBLIOGRÁFICAS E APÊNDICES PDF