Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Título: REDES NEURAIS APLICADAS AO RECONHECIMENTO DE IMAGENS BI-DIMENSIONAIS
Autor: GUY PERELMUTER
Colaborador(es): MARLEY MARIA BERNARDES REBUZZI VELLASCO - Orientador
Catalogação: 05/JUL/2006 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=8636&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=8636&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.8636
Resumo:
Esta dissertação investiga a aplicação de Redes Neurais Artificiais no reconhecimento de imagens bi-dimensionais. O trabalho de tese foi dividido em quatro partes principais: um estudo sobre a importância da Visão Computacional e sobre os benefícios da aplicação das técnicas da Inteligência Computacional na área; um estudo da estrutura dos sistemas de reconhecimento de imagens encontrados na literatura; o desenvolvimento de dois sistemas de reconhecimento de imagens baseados em redes neurais; e o estudo de caso e a análise de desempenho dos sistemas desenvolvidos. A Visão Computacional tem se beneficiado das principais técnicas de Inteligência Computacional (redes neurais, algoritmos genéticos e lógica nebulosa) na implementação de sistemas de reconhecimento de imagens. Neste trabalho estudou-se a aplicação de diversos tipos de redes neurais na classificação de imagens Back-Propagation, Competitivas, RBF e Hierárquicas. Além disso, foi realizado um estudo das áreas de aplicação da Visão Computacional. A estrutura básica utilizada por diversos sistemas de Visão Computacional encontrada na literatura foi analisada. Esta estrutura é tipicamente composta por três módulos principais: um pré-processador, um extrator de características e um classificador. Dois sistemas de reconhecimento de imagens, denominados de XVision e SimpleNet, foram desenvolvidos neste trabalho. O sistema XVision segue a estrutura descrita acima, enquanto que o sistema SimpleNet utiliza a informação da imagem bruta para realizar a classificação. O módulo de pré-processamento do sistema XVision executa uma série de transformações na imagem, extraindo suas características intrínsecas para que seja obtida uma representação da imagem invariante a aspectos como rotação, translação e escalonamento. Este Pré- Processador é baseado em um trabalho previamente realizado no campo de Processamento de Sinais. A etapa de extração de características visa detectar as informações mais relevantes contidas na representação da imagem intrínseca obtida na etapa anterior. Foram investigados extratores baseados em técnicas estatísticas (utilizando o discriminante de Fisher) e em técnicas inteligentes (utilizando algoritmos genéticos). Para o módulo de classificação das imagens foram utilizados diversos tipos de redes neurais artificiais: Back-Propagation, Competitivas, RBFs e Hierárquicas. No sistema SimpleNet, o pré-processamento limita-se à redução das dimensões da imagem a ser classificada. Como os próprios pixels da imagem são utilizados para a classificação, não foi implementado um módulo de extração de características. Na etapa de classificação foram empregadas redes neurais Back- Propagation e Competitivas. O sistema XVision apresentou resultados promissores para dois conjuntos distintos de objetos bi-dimensionais: o primeiro composto por peças mecânicas e o segundo por objetos triviais. As amostras utilizadas nos testes apresentavam características diferentes daquelas com as quais as redes neurais foram treinadas - não apenas com rotações, translações e escalonamentos, mas com diferenças estruturais. O classificador conseguiu taxas de acerto superiores a 83% em ambos os conjuntos de objetos. O sistema SimpleNet também mostrou-se eficiente na diferenciação de imagens semelhantes (cartões telefônicos e radiografias de pulmões), obtendo taxas de acerto superiores a 80%. O desenvolvimento destes sistemas demonstrou a viabilidade da aplicação de redes neurais na classificação de objetos bi- dimensionais. Devido ao grande interesse na utilização de sistemas de Visão em aplicações de tempo real, mediu-se o tempo gasto nos processos de reconhecimento. Desta forma foram detectados os garagalos dos sistemas, facilitando assim sua otimização.
Descrição: Arquivo:   
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS PDF      
CAPÍTULO 1 E CAPÍTULO 2 PDF      
CAPÍTULO 3 PDF      
CAPÍTULO 4 PDF      
CAPÍTULO 5 PDF      
CAPÍTULO 6 PDF      
CAPÍTULO 7 PDF      
REFERÊNCIAS BIBLIOGRÁFICAS E APÊNDICES PDF