Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: MACHINE LEARNING PARA PREVISÃO DO COMPORTAMENTO DE AREIAS EM ENSAIOS DE CISALHAMENTO DIRETO E DSS
Autor: GLEYCE DE SOUZA BAPTISTA
Colaborador(es): MARINA BELLAVER CORTE - Orientador
Catalogação: 11/NOV/2024 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=68591&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=68591&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.68591
Resumo:
Na geotecnia, os parâmetros de resistência do solo são essenciais para qualquer projeto. Os ensaios de campo e laboratório são essenciais, mas ainda enfrentam muitas limitações práticas e financeiras. Além disso, métodos tradicionais, apoiados em relações empíricas ou teóricas, frequentemente não conseguem abranger a complexidade comportamental do solo. Diante disso, destaca-se a necessidade de explorar alternativas para superar essas barreiras. Neste contexto, a inteligência artificial surge como uma abordagem inovadora. Este estudo propõe um modelo preditivo para analisar a curva tensão-deslocamento em ensaios de cisalhamento direto e tensão-deformação em ensaios de cisalhamento simples (Direct Simple Shear - DSS) em areia. Após coletar e digitalizar dados de diversas fontes acadêmicas, formou-se uma base experimental robusta para treinar três algoritmos de Machine Learning (ML): Support Vector Regression (SVR), Random Forest (RF) e Feedforward Neural Network (FNN). Foram realizadas análises comparativas dos modelos, com foco particular na avaliação de métricas de desempenho e curvas dos ensaios de validação. O RF destacou-se por sua precisão e confiabilidade. Embora os modelos SVR e FNN tenham demonstrado utilidade, o RF emergiu como o mais eficaz. Este resultado reforça a viabilidade dos modelos de ML, particularmente o RF, como ferramentas valiosas para engenheiros geotécnicos e pesquisadores na previsão do comportamento de areias, mesmo com um conjunto de dados limitado.
Descrição: Arquivo:   
NA ÍNTEGRA PDF