Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: ENRIQUECIMENTO DE DADOS COM BASE EM ESTATÍSTICAS DE GRAFO DE SIMILARIDADE PARA MELHORAR O DESEMPENHO EM MODELOS DE ML SUPERVISIONADOS DE CLASSIFICAÇÃO
Autor: NEY BARCHILON
Colaborador(es): HELIO CORTES VIEIRA LOPES - Orientador
Catalogação: 19/SET/2024 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=68124&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=68124&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.68124
Resumo:
A otimização do desempenho dos modelos de aprendizado de máquina supervisionados representa um desafio constante, especialmente em contextos com conjuntos de dados de alta dimensionalidade ou com numerosos atributos correlacionados. Neste estudo, é proposto um método para o enriquecimento de conjuntos de dados tabulares, fundamentado na utilização de estatísticas provenientes de um grafo construído a partir da similaridade entre as instâncias presentes neste conjunto de dados, buscando capturar correlações estruturais entre esses dados. As instâncias assumem o papel de vértices no grafo, enquanto as conexões entre elas refletem sua similaridade. O conjunto de características originais (FO) é enriquecido com as estatísticas extraídas do grafo (FG) na busca pela melhora do poder preditivo dos modelos de aprendizado de máquina. O método foi avaliado em dez conjuntos de dados públicos de distintas áreas de conhecimento, em dois cenários distintos, sobre sete modelos de aprendizado de máquina, comparando a predição sobre o conjunto de dados inicial (FO) com o conjunto de dados enriquecido com as estatísticas extraídas do seu grafo (FO+FG). Os resultados revelaram melhorias significativas na métrica de acurácia, com um aprimoramento médio de aproximadamente 4,9 por cento. Além de sua flexibilidade para integração com outras técnicas de enriquecimento existentes, o método se apresenta como uma alternativa eficaz, sobretudo em situações em que os conjuntos de dados originais carecem das características necessárias para as abordagens tradicionais de enriquecimento com a utilização de grafo.
Descrição: Arquivo:   
NA ÍNTEGRA PDF