Título: | ENRIQUECIMENTO DE DADOS COM BASE EM ESTATÍSTICAS DE GRAFO DE SIMILARIDADE PARA MELHORAR O DESEMPENHO EM MODELOS DE ML SUPERVISIONADOS DE CLASSIFICAÇÃO | ||||||||||||
Autor: |
NEY BARCHILON |
||||||||||||
Colaborador(es): |
HELIO CORTES VIEIRA LOPES - Orientador |
||||||||||||
Catalogação: | 19/SET/2024 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=68124&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=68124&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.68124 | ||||||||||||
Resumo: | |||||||||||||
A otimização do desempenho dos modelos de aprendizado de máquina
supervisionados representa um desafio constante, especialmente em contextos
com conjuntos de dados de alta dimensionalidade ou com numerosos atributos
correlacionados. Neste estudo, é proposto um método para o enriquecimento
de conjuntos de dados tabulares, fundamentado na utilização de estatísticas
provenientes de um grafo construído a partir da similaridade entre as instâncias
presentes neste conjunto de dados, buscando capturar correlações estruturais
entre esses dados. As instâncias assumem o papel de vértices no grafo, enquanto
as conexões entre elas refletem sua similaridade. O conjunto de características
originais (FO) é enriquecido com as estatísticas extraídas do grafo (FG)
na busca pela melhora do poder preditivo dos modelos de aprendizado de
máquina. O método foi avaliado em dez conjuntos de dados públicos de
distintas áreas de conhecimento, em dois cenários distintos, sobre sete modelos
de aprendizado de máquina, comparando a predição sobre o conjunto de dados
inicial (FO) com o conjunto de dados enriquecido com as estatísticas extraídas
do seu grafo (FO+FG). Os resultados revelaram melhorias significativas na
métrica de acurácia, com um aprimoramento médio de aproximadamente
4,9 por cento. Além de sua flexibilidade para integração com outras técnicas de
enriquecimento existentes, o método se apresenta como uma alternativa eficaz,
sobretudo em situações em que os conjuntos de dados originais carecem das
características necessárias para as abordagens tradicionais de enriquecimento
com a utilização de grafo.
|
|||||||||||||
|