Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: PROBLEMAS QUE LEVAM A GERAÇÃO DE DÍVIDA TÉCNICA DE CÓDIGO EM SISTEMAS DE APRENDIZADO DE MÁQUINA
Autor: RODRIGO GALDINO XIMENES
Colaborador(es): MARCOS KALINOWSKI - Orientador
TATIANA ESCOVEDO - Coorientador
Catalogação: 10/SET/2024 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=67941&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=67941&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.67941
Resumo:
[Contexto] A dívida técnica (DT) em sistemas de aprendizado de máquina (AM), assim como sua contraparte em engenharia de software (ES), tem o potencial de levar a retrabalhos futuros, representando riscos para produtividade, qualidade e moral da equipe. No entanto, compreender melhor os problemas relacionados ao código que levam à DT em sistemas de AM ainda é um campo em aberto. [Objetivo] Este artigo tem como objetivo identificar e discutir a relevância de problemas que levam a DT no código de AM ao longo do ciclo de vida do AM. [Método] O estudo compilou inicialmente uma lista de problemas potenciais que podem levar à DT no código de AM, analisando as fases do ciclo de vida do AM e suas tarefas típicas. Posteriormente, a lista de problemas foi refinada através da avaliação da prevalência e relevância dos problemas que levam à DT no código de AM por meio de feedback coletado de profissionais da indústria em duas sessões de grupos focais. [Resultados] O estudo compilou uma lista inicial de 34 problemas que potencialmente contribuem para DT em código-fonte de sistemas de AM. Através de duas sessões de grupos focais com nove participantes, esta lista foi refinada para 30 problemas que levam à DT relacionada ao código de AM, sendo 24 considerados altamente relevantes. A fase de pré-processamento de dados foi a mais crítica, com 14 problemas considerados altamente relevantes em potencialmente levar a uma DT grave no código de AM. Cinco problemas foram considerados altamente relevantes na fase de criação e treinamento do modelo e quatro na fase de coleta de dados. A lista final de problemas está disponível para a comunidade. [Conclusão] A lista pode ajudar a aumentar a conscientização sobre os problemas a serem tratados ao longo do ciclo de vida do AM para minimizar a acumulação de DT, ajudando a melhorar a manutenibilidade de sistemas de AM.
Descrição: Arquivo:   
NA ÍNTEGRA PDF