Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: SINTESE CONTROLADA DE MATERIAIS NANOESTRUTURADOS PARA APLICAÇÕES NA CONVERSÃO DE ENERGIA
Autor: SCARLLETT LALESCA SANTOS DE LIMA
Colaborador(es): ROBERTO RIBEIRO DE AVILLEZ - Orientador
Catalogação: 09/SET/2024 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=67914&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=67914&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.67914
Resumo:
Diante da crise energética mundial a busca por tecnologias eficientes como substitutas aos combustíveis fósseis é cada vez mais incessante. Partindo dessa premissa, este presente trabalho aborda a síntese controlada de dois nanomateriais que foram utilizados como catalisadores para aplicações na conversão de energia. Deste modo, o primeiro trabalho descreve a síntese de nanoflores de Pd em uma única etapa de reação reduzindo o Íon Tetracloropaladato com hidroquinona. Simplesmente controlando a temperatura de reação, foi possível obter nanoflores monodispersas de Pd com formas e tamanhos bem definidos. Com base na morfologia do produto detectado, na cristalinidade e em vários experimentos de controle, foi estabelecido um novo mecanismo não clássico baseado nas teorias LaMer e DLVO. Neste procedimento, o controle da temperatura permitiu ajustar a força iônica da solução (controle da fração de íons Tetracloropaladato e K+ presentes na solução), o que afetou as etapas de fixação e agregação, levando as nanoflores de Pd com tamanhos e morfologias controlados. Quando esses nanomateriais foram empregados como nanocatalisadores para eletrooxidação de etanol, as nanoflores de Pd de 12 nm foram o melhor catalisador em termos de atividade e potencial. No segundo trabalho, foram empregados nanofios de MnO2 decorados com nanopartículas de Ir(1, 2 por cento em peso) com 1,8 ± 0,7 nm para a reação de redução do oxigênio (RRO). Foi observado que o nanohíbrido MnO2—Ir apresentou alta atividade catalítica e estabilidade melhorada para RRO em relação a Pt/C comercial (20 por cento em peso de Pt). O desempenho superior proporcionado pelo nanohíbrido MnO2—Ir pode estar relacionado (i) à concentração significativa de espécies reduzidas de Mn3+, levando ao aumento da concentração de vacâncias de oxigênio em sua superfície; (ii) a presença de fortes interações metal-suporte, nas quais o efeito eletrônico entre MnOx e Ir pode potencializar o processo RRO; e (iii) a estrutura única composta por tamanhos ultrapequenos de Ir na superfície do nanofio que permitem a exposição de superfícies/facetas de alta energia, altas relações superfície-volume e sua dispersão uniforme.
Descrição: Arquivo:   
NA ÍNTEGRA PDF