Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: MONITORAMENTO DE MORANGOS: DETECÇÃO, CLASSIFICAÇÃO E SERVOVISÃO
Autor: GABRIEL LINS TENORIO
Colaborador(es): WOUTER CAARLS - Orientador
Catalogação: 27/AGO/2024 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=67743&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=67743&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.67743
Resumo:
O presente trabalho inicia com uma investigação sobre o uso de modelos de Aprendizado Profundo 3D para a detecção aprimorada de morangos em túneis de cultivo. Focou-se em duas tarefas principais: primeiramente, a detecção de frutas, comparando o modelo original MaskRCNN com uma versão adaptada que integra informações de profundidade (MaskRCNN-D). Ambos os modelos são capazes de classificar morangos baseados em sua maturidade (maduro, não maduro) e estado de saúde (afetados por doença ou fungo). Em segundo lugar, focou-se em identificar a região mais ampla dos morangos, cumprindo um requisito para um sistema de espectrômetro capaz de medir o conteúdo de açúcar das frutas. Nesta tarefa, comparouse um algoritmo baseado em contorno com uma versão aprimorada do modelo VGG-16. Os resultados demonstram que a integração de dados de profundidade no MaskRCNN-D resulta em até 13.7 por cento de melhoria no mAP através de diversos conjuntos de teste de morangos, incluindo os simulados, enfatizando a eficácia do modelo em cenários agrícolas reais e simulados. Além disso, nossa abordagem de solução ponta-a-ponta, que combina a detecção de frutas (MaskRCNN-D) e os modelos de identificação da região mais ampla (VGG-16 aprimorado), mostra um erro de localização notavelmente baixo, alcançando até 11.3 pixels de RMSE em uma imagem de morango cortada de 224 × 224. Finalmente, explorou-se o desafio de aprimorar a qualidade das leituras de dados do espectrômetro através do posicionamento automático do sensor. Para tal, projetou-se e treinou-se um modelo de Aprendizado Profundo com dados simulados, capaz de prever a acurácia do sensor com base em uma imagem dada de um morango e o deslocamento desejado da posição do sensor. Usando este modelo, calcula-se o gradiente da saída de acurácia em relação à entrada de deslocamento. Isso resulta em um vetor indicando a direção e magnitude com que o sensor deve ser movido para melhorar a acurácia do sinal do sensor. Propôs-se então uma solução de Servo Visão baseada neste vetor, obtendo um aumento significativo na acurácia média do sensor e melhoria na consistência em novas iterações simuladas.
Descrição: Arquivo:   
NA ÍNTEGRA PDF