Título: | DESENVOLVIMENTO DE METODOLOGIA DE APOIO À DECISÃO PARA MANUTENÇÃO INTELIGENTE COMBINANDO ABORDAGENS MULTICRITÉRIO E MACHINE LEARNING: ESTUDO DE CASO EM EMPRESA DE MANUFATURA | ||||||||||||
Autor: |
JAQUELINE ALVES DO NASCIMENTO |
||||||||||||
Colaborador(es): |
RODRIGO GOYANNES GUSMAO CAIADO - Orientador LUIZ FELIPE RORIS RODRIGUEZ SCAVARDA DO CARMO - Coorientador |
||||||||||||
Catalogação: | 13/MAI/2024 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=66631&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=66631&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.66631 | ||||||||||||
Resumo: | |||||||||||||
A Indústria 4.0 (I4.0) e a transformação digital estão revolucionando a
manutenção nas indústrias, impulsionando-a rumo a uma abordagem mais
inteligente e proativa, conhecida como manutenção inteligente (smart maintenance
– SM). Recentemente vive-se a transição para a Manutenção 4.0, em que decisões
baseada em dados e análises avançadas trazidas com a SM permitem aumentar a
eficiência, reduzir os custos operacionais e têm um grande impacto no desempenho
operacional. Com a crescente digitalização dos processos e a disponibilidade de
novas tecnologias, as decisões estão se tornando mais inteligentes, o que requer ter
um processo de tomada de decisão estruturado. No entanto, tomar decisões
gerenciais pode ser complexo devido a múltiplos critérios e pontos de vista
envolvidos. Por exemplo, podem existir trade-offs e prioridades competitivas
diferentes entre equipes funcionais como de manutenção, de produção e financeira.
Nessa perspectiva, é crucial ter uma metodologia que combine esses aspectos
conflitantes e, na era da Manutenção 4.0, a consideração de múltiplos critérios e
pontos de vista, justifica a necessidade de um framework de apoio a decisão que
combine técnicas de apoio multicritério a decisão (multi-criteria decision making -
MCDM) e Machine Learning (ML). A partir da revisão de escopo observou-se a
ausência de metodologias (e frameworks) de apoio a decisão combinando essas
abordagens em estudos empíricos e em países emergentes. Diante disso, a presente
pesquisa propoe aplicar um framework de apoio à decisão para SM em empresa de
manufatura brasileira. Como método empírico foi realizado um estudo de caso,
utilizando dados reais de manutenção, observação participante e entrevistas, além
de análise documental. Uma abordagem multicritério híbrida é proposta por meio
dos métodos AHP, MOORA, MULTIMORA e de Borda com dados qualitativos e
quantitativos, para resolver um problema de ranking de impressoras para fazer parte
do início das manutenções preditivas. A implementação computacional compõem
a metodologia ocorreu em Python. Ao final foi possível observar que a combinação
de MCDM e ML pode ser uma abordagem eficaz para aprimorar a tomada de
decisão na manutenção, considerando a complexidade dos dados envolvidos.
|
|||||||||||||
|