Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: PREVISÃO DO ACÚMULO DE DEFORMAÇÕES PLÁSTICAS EM CONTORNOS DE GRÃOS DE METAIS POLICRISTALINOS BASEADO EM APRENDIZADO DE MÁQUINA
Autor: LARA CRISTINA PEREIRA DE ARAUJO
Colaborador(es): HELON VICENTE HULTMANN AYALA - Orientador
RENATO BICHARA VIEIRA - Coorientador
Catalogação: 30/NOV/2023 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=65290&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=65290&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.65290
Resumo:
Métodos de aprendizado de máquina vêm sendo bastante utilizados na área de mecânica dos sólidos devido ao grande volume de dados disponíveis na literatura. A motivação deste trabalho foi o estudo do acúmulo de deformação plástica na escala de grãos, pois o uso do aprendizado de máquina pode ser uma significativa contribuição para criar modelos capazes de prever o acúmulo de deformações. O objetivo deste trabalho foi aprimorar a previsão do acúmulo de deformação plástica propondo um novo método de previsão de acúmulo de deformações plásticas em contornos de grãos de um material policristalino, usando modelos de aprendizado de máquina. Este trabalho utilizou-se de dados experimentais da literatura para estruturar três bancos de dados, os que consideraram somente os contornos de grãos. Nas previsões foram utilizados os seguintes métodos: Decision Tree, Random Forest, Stochastic Gradient Descent, K-Nearest Neighbors, Gradient Boosting Regressor e Análise de Componentes Principais (PCA). Na avaliação dos modelos foram empregados os métodos de validação cruzada e reamostragem de Monte Carlo. As métricas de erro aplicadas foram o coeficiente de determinação (R2) e o coeficiente de correlação de Pearson (R). Os resultados apontaram que as previsões foram coerentes e de boa qualidade, melhorando os valores médios do coeficiente de Pearson em aproximadamente 30 por cento comparados aos valores da literatura. Para o R(2) a média de valores alcançada foi de 0.85. Conclui-se que o uso do método de aprendizado de máquina se mostra confiável na previsão do acúmulo de deformação plástica no contorno do grão de um material policristalino.
Descrição: Arquivo:   
NA ÍNTEGRA PDF