Título: | UMA ABORDAGEM DE APRENDIZADO SUPERVISIONADO PARA PREVER A DEMANDA DE AJUDA FAMILIAR PARA DESASTRES CLIMÁTICOS RECORRENTES NO PERU | ||||||||||||
Autor: |
RENATO JOSE QUILICHE ALTAMIRANO |
||||||||||||
Colaborador(es): |
ADRIANA LEIRAS - Orientador FERNANDA ARAUJO BAIAO AMORIM - Coorientador |
||||||||||||
Catalogação: | 21/NOV/2023 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=64971&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=64971&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.64971 | ||||||||||||
Resumo: | |||||||||||||
Esta dissertação apresenta uma abordagem baseada em dados para
o problema de predição de desastres recorrentes em países em
desenvolvimento. Métodos de aprendizado de máquina supervisionado são
usados para treinar classificadores que visam prever se uma família seria
afetada por ameaças climáticas recorrentes (um classificador é treinado
para cada perigo natural). A abordagem desenvolvida é válida para perigos
naturais recorrentes que afetam um país e permite que os gerentes de risco
de desastres direcionem suas operações com mais conhecimento. Além
disso, a avaliação preditiva permite que os gerentes entendam os
impulsionadores dessas previsões, levando à formulação proativa de
políticas e planejamento de operações para mitigar riscos e preparar
comunidades para desastres recorrentes.
A metodologia proposta foi aplicada ao estudo de caso do Peru, onde
foram treinados classificadores para ondas de frio, inundações e
deslizamentos de terra. No caso das ondas de frio, o classificador tem
73,82% de precisão. A pesquisa descobriu que famílias pobres em áreas
rurais são vulneráveis a desastres relacionados a ondas de frio e precisam
de intervenção humanitária proativa. Famílias vulneráveis têm
infraestrutura urbana precária, incluindo trilhas, caminhos, postes de
iluminação e redes de água e drenagem. O papel do seguro saúde, estado
de saúde e educação é menor. Domicílios com membros doentes levam a
maiores probabilidades de serem afetados por ondas de frio. Maior
realização educacional do chefe da família está associada a uma menor
probabilidade de ser afetado por ondas de frio. No caso das inundações, o classificador tem 82.57% de precisão.
Certas condições urbanas podem tornar as famílias rurais mais suscetíveis
a inundações, como acesso à água potável, postes de iluminação e redes
de drenagem. Possuir um computador ou laptop diminui a probabilidade de
ser afetado por inundações, enquanto possuir uma bicicleta e ser chefiado
por indivíduos casados aumenta. Inundações são mais comuns em
assentamentos urbanos menos desenvolvidos do que em famílias rurais
isoladas.
No caso dos deslizamentos de terra, o classificador tem 88.85% de
precisão, e é segue uma lógica diferente do das inundações. A importância
na previsão é mais uniformemente distribuída entre as características
consideradas no aprendizado do classificador. Assim, o impacto de um
recurso individual na previsão é pequeno. A riqueza a longo prazo parece
ser mais crítica: a probabilidade de ser afetado por um deslizamento é
menor para famílias com certos aparelhos e materiais domésticos de
construção. Comunidades rurais são mais afetadas por deslizamentos,
especialmente aquelas localizadas em altitudes mais elevadas e maiores
distâncias das cidades e mercados. O impacto marginal médio da altitude
é não linear.
Os classificadores fornecem um método inteligente baseado em
dados que economiza recursos garantindo precisão. Além disso, a
pesquisa fornece diretrizes para abordar a eficiência na distribuição da
ajuda, como formulações de localização da instalação e roteamento de
veículos.
Os resultados da pesquisa têm várias implicações gerenciais, então
os autores convocam à ação gestores de risco de desastres e outros
interessados relevantes. Desastres recorrentes desafiam toda a
humanidade.
|
|||||||||||||
|