Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: DESENVOLVIMENTO DE UMA METODOLOGIA PARA CARACTERIZAÇÃO DE FASES NO PELLET FEED UTILIZANDO MICROSCOPIA DIGITAL E APRENDIZAGEM PROFUNDA
Autor: THALITA DIAS PINHEIRO CALDAS
Colaborador(es): SIDNEI PACIORNIK - Orientador
KAREN SOARES AUGUSTO - Coorientador
Catalogação: 09/NOV/2023 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=64711&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=64711&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.64711
Resumo:
O minério de ferro é encontrado na natureza como agregado de minerais, dentre os principais minerais presentes em sua composição estão: hematita, magnetita, goethita e quartzo. Dada a importância do minério de ferro para a indústria, há um crescente interesse por sua caracterização com o objetivo de avaliar a qualidade do material. Com o avanço de pesquisas na área de análise de imagens e microscopia, rotinas de caracterização foram desenvolvidas utilizando ferramentas de Microscopia Digital e Processamento e Análise Digital de Imagens capazes de automatizar grande parte do processo. Porém esbarrava-se em algumas dificuldades, como por exemplo identificar e classificar as diferentes texturas das partículas de hematita, as diferentes formas de seus cristais ou discriminar quartzo e resina em imagens de microscopia ótica de luz refletida. Desta forma, a partir da necessidade de se construir sistemas capazes de aprender e se adaptar a possíveis variações das imagens deste material, surgiu a possibilidade de estudar a utilização de ferramentas de Deep Learning para esta função. Este trabalho propõe o desenvolvimento de uma nova metodologia de caracterização mineral baseada em Deep Learning utilizando o algoritmo Mask R-CNN. Através do qual é possível realizar segmentação de instâncias, ou seja, desenvolver sistemas capazes de identificar, classificar e segmentar objetos nas imagens. Neste trabalho, foram desenvolvidos dois modelos: Modelo 1 que realiza segmentação de instâncias para as classes compacta, porosa, martita e goethita em imagens obtidas em Campo Claro e o Modelo 2 que utiliza imagens adquiridas em Luz Polarizada Circularmente para segmentar as classes monocristalina, policristalina e martita. Para o Modelo 1 foi obtido F1-score em torno de 80 por cento e para o Modelo 2 em torno de 90 por cento. A partir da segmentação das classes foi possível extrair atributos importantes de cada partícula, como distribuição de quantidade, medidas de forma, tamanho e fração de área. Os resultados obtidos foram muito promissores e indicam que a metodologia desenvolvida pode ser viável para tal caracterização.
Descrição: Arquivo:   
NA ÍNTEGRA PDF