Título: | DESENVOLVIMENTO DE UMA METODOLOGIA PARA CARACTERIZAÇÃO DE FASES NO PELLET FEED UTILIZANDO MICROSCOPIA DIGITAL E APRENDIZAGEM PROFUNDA | ||||||||||||
Autor: |
THALITA DIAS PINHEIRO CALDAS |
||||||||||||
Colaborador(es): |
SIDNEI PACIORNIK - Orientador KAREN SOARES AUGUSTO - Coorientador |
||||||||||||
Catalogação: | 09/NOV/2023 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=64711&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=64711&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.64711 | ||||||||||||
Resumo: | |||||||||||||
O minério de ferro é encontrado na natureza como agregado de minerais,
dentre os principais minerais presentes em sua composição estão: hematita,
magnetita, goethita e quartzo. Dada a importância do minério de ferro para a
indústria, há um crescente interesse por sua caracterização com o objetivo de avaliar
a qualidade do material. Com o avanço de pesquisas na área de análise de imagens
e microscopia, rotinas de caracterização foram desenvolvidas utilizando
ferramentas de Microscopia Digital e Processamento e Análise Digital de Imagens
capazes de automatizar grande parte do processo. Porém esbarrava-se em algumas
dificuldades, como por exemplo identificar e classificar as diferentes texturas das
partículas de hematita, as diferentes formas de seus cristais ou discriminar quartzo
e resina em imagens de microscopia ótica de luz refletida. Desta forma, a partir da
necessidade de se construir sistemas capazes de aprender e se adaptar a possíveis
variações das imagens deste material, surgiu a possibilidade de estudar a utilização
de ferramentas de Deep Learning para esta função. Este trabalho propõe o
desenvolvimento de uma nova metodologia de caracterização mineral baseada em
Deep Learning utilizando o algoritmo Mask R-CNN. Através do qual é possível
realizar segmentação de instâncias, ou seja, desenvolver sistemas capazes de
identificar, classificar e segmentar objetos nas imagens. Neste trabalho, foram
desenvolvidos dois modelos: Modelo 1 que realiza segmentação de instâncias para
as classes compacta, porosa, martita e goethita em imagens obtidas em Campo
Claro e o Modelo 2 que utiliza imagens adquiridas em Luz Polarizada
Circularmente para segmentar as classes monocristalina, policristalina e martita.
Para o Modelo 1 foi obtido F1-score em torno de 80 por cento e para o Modelo 2 em torno
de 90 por cento. A partir da segmentação das classes foi possível extrair atributos
importantes de cada partícula, como distribuição de quantidade, medidas de forma,
tamanho e fração de área. Os resultados obtidos foram muito promissores e indicam
que a metodologia desenvolvida pode ser viável para tal caracterização.
|
|||||||||||||
|