Título: | PROCESSOS DE RAMIFICAÇÃO PARA O ESTUDO DE EPIDEMIAS | ||||||||||||
Autor: |
JOAO PEDRO XAVIER FREITAS |
||||||||||||
Colaborador(es): |
ROBERTA DE QUEIROZ LIMA - Orientador RUBENS SAMPAIO FILHO - Coorientador |
||||||||||||
Catalogação: | 26/OUT/2023 | Língua(s): | INGLÊS - ESTADOS UNIDOS |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=64469&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=64469&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.64469 | ||||||||||||
Resumo: | |||||||||||||
Este trabalho modela a evolução temporal de uma epidemia com uma
abordagem estocástica. O número de novas infecções por infectado é modelado
como uma variável aleatória discreta, chamada aqui de contágio. Logo, a
evolução temporal da doença é um processo estocástico. Mais especificamente,
a propagação é dada pelo modelo de Bienaymé-Galton-Watson, um tipo
de processo de ramificação de parâmetro discreto. Neste processo, para um
determinado instante, o número de membros infectados, ou seja, a geração de
membros infectados é uma variável aleatória. Na primeira parte da dissertação,
dado que o modelo probabilístico do contágio é conhecido, quatro metodologias
utilizadas para obter as funções de massa das gerações do processo estocástico
são comparadas. As metodologias são: funções geradoras de probabilidade com
e sem identidades polinomiais, cadeia de Markov e simulações de Monte Carlo.
A primeira e terceira metodologias fornecem expressões analíticas relacionando
a variável aleatória de contágio com a variável aleatória do tamanho de uma
geração. Essas expressões analíticas são utilizadas na segunda parte desta
dissertação, na qual o problema clássico de inferência paramétrica bayesiana é
estudado. Com a ajuda do teorema de Bayes, parâmetros da variável aleatória
de contágio são inferidos a partir de realizações do processo de ramificação. As
expressões analíticas obtidas na primeira parte do trabalho são usadas para
construir funções de verossimilhança apropriadas. Para resolver o problema
inverso, duas maneiras diferentes de se usar dados provindos do processo
de Bienaymé-Galton-Watson são desenvolvidas e comparadas: quando dados
são realizações de uma única geração do processo de ramificação ou quando
os dados são uma única realização do processo de ramificação observada ao
longo de uma quantidade de gerações. O critério abordado neste trabalho para
encerrar o processo de atualização na inferência paramétrica usa a distância
de L2-Wasserstein, que é uma métrica baseada no transporte ótimo de massa.
Todas as rotinas numéricas e simbólicas desenvolvidas neste trabalho são
escritas em MATLAB.
|
|||||||||||||
|