Título: | DIAGRAMAS DE DECISÃO PARA CLASSIFICAÇÃO: NOVAS ABORDAGENS CONSTRUTIVAS | ||||||||||||
Autor: |
PEDRO SARMENTO BARBOSA MARTINS |
||||||||||||
Colaborador(es): |
THIBAUT VICTOR GASTON VIDAL - Orientador |
||||||||||||
Catalogação: | 16/OUT/2023 | Língua(s): | INGLÊS - ESTADOS UNIDOS |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=64308&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=64308&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.64308 | ||||||||||||
Resumo: | |||||||||||||
Diagramas de decisão são uma generalização de árvores de decisão, já
propostos como um modelo de aprendizado de máquina para classificação supervisionada mas não largamente adotados. A razão é a dificuldade em treinar
o modelo, já que o requerimento de decidir splits (partições) e merges (uniões
de nós) em conjunto pode levar a problemas difíceis de otimização combinatória. Um diagrama de decisão tem importantes vantagens sobre árvores de
decisão, pois melhor expressa conceitos binários disjuntos, evitando o problema
de duplicação de subárvores e, portanto, apresentando menos fragmentação em
nós internos. Por esse motivo, desenvolver algoritmos efetivos de construção é
um esforço importante. Nesse contexto, o algoritmo Optimal Decision Diagram
(ODD) foi recentemente proposto, formulando a construção do diagrama com
programação inteira mista (MILP na sigla em inglês), com um warm start proveniente de uma heurística construtiva gulosa. Experimentos mostraram que
essa heurística poderia ser aperfeiçoada, a fim de encontrar soluções próximas
do ótimo de maneira mais efetiva, e por sua vez prover um warm start melhor.
Nesse estudo, reportamos aperfeiçoamentos para essa heurística construtiva,
sendo eles a randomização das decisões de split, a poda de fluxos puros (ou
seja, fluxos de exemplos pertencentes a uma única classe), e aplicando uma
poda bottom-up (de baixo para cima), que considera a complexidade do modelo além da sua acurácia. Todos os aperfeiçoamentos propostos têm efeitos
positivos na acurácia e generalização, assim como no valor objetivo do algoritmo ODD. A poda bottom-up, em especial, tem impacto significativo no valor
objetivo, e portanto na capacidade da formulação MILP de encontrar soluções
ótimas. Ademais, provemos experimentos sobre a expressividade de diagramas
de decisão em comparação a árvores no contexto de pequenas funções booleanas em Forma Normal Disjuntiva (DNF na sigla em inglês), assim como uma
aplicação web para a exploração visual dos métodos construtivos propostos.
|
|||||||||||||
|