Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: DISTRICTING E ROTEAMENTO DE VEÍCULOS: APRENDENDO A ESTIMAR CUSTOS DE ENTREGA
Autor: ARTHUR MONTEIRO FERRAZ
Colaborador(es): THIBAUT VICTOR GASTON VIDAL - Orientador
QUENTIN CAPPART - Coorientador
Catalogação: 12/JAN/2023 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=61766&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=61766&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.61766
Resumo:
O problema de Districting-and-routing é um problema estratégico no qual porções geográficas devem ser agregadas em regiões de entrega, e cada região de entrega possui um custo de roteamento estimado. Seu objetivo é de minimizar esses custos, além de garantir a divisão da região em distritos. A simulação para obter uma boa aproximação é muito custosa computacionalmente, enquanto mecanismos como buscas locais exigem que esse cálculo seja feito de forma muito eficiente, tornando essa estratégia de aproximação inviável para uma solução metaheurística. Grande parte das soluções existentes para esse problema utilizam de formulas de aproximação contínua para mensurar os custos de roteamento, funções essas que são rápidas de serem calculadas porém cometem erros significativos. Em contraste, propomos uma Rede Neural em Grafo (Graph Neural Network - GNN) que é usada como oráculo por um algoritmo de otimização. Nossos experimentos computacionais executados com dados de cidades do Reino Unido mostram que a GNN é capaz de produzir previsões de custos mais precisas em tempo computacional aceitável. O uso desse estimator na busca local impacta positivamente a qualidade das soluções, levando a uma economia de 10,35 por cento no custo de entrega estimado em relação a função Beardwood, que é comumente usada nesse cenários, e ganhos similares em comparação com outros métodos de aproximação.
Descrição: Arquivo:   
NA ÍNTEGRA PDF