Título: | DISTRICTING E ROTEAMENTO DE VEÍCULOS: APRENDENDO A ESTIMAR CUSTOS DE ENTREGA | ||||||||||||
Autor: |
ARTHUR MONTEIRO FERRAZ |
||||||||||||
Colaborador(es): |
THIBAUT VICTOR GASTON VIDAL - Orientador QUENTIN CAPPART - Coorientador |
||||||||||||
Catalogação: | 12/JAN/2023 | Língua(s): | INGLÊS - ESTADOS UNIDOS |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=61766&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=61766&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.61766 | ||||||||||||
Resumo: | |||||||||||||
O problema de Districting-and-routing é um problema estratégico no qual
porções geográficas devem ser agregadas em regiões de entrega, e cada região de
entrega possui um custo de roteamento estimado. Seu objetivo é de minimizar
esses custos, além de garantir a divisão da região em distritos. A simulação para
obter uma boa aproximação é muito custosa computacionalmente, enquanto
mecanismos como buscas locais exigem que esse cálculo seja feito de forma
muito eficiente, tornando essa estratégia de aproximação inviável para uma
solução metaheurística. Grande parte das soluções existentes para esse problema
utilizam de formulas de aproximação contínua para mensurar os custos de
roteamento, funções essas que são rápidas de serem calculadas porém cometem
erros significativos. Em contraste, propomos uma Rede Neural em Grafo (Graph
Neural Network - GNN) que é usada como oráculo por um algoritmo de
otimização. Nossos experimentos computacionais executados com dados de
cidades do Reino Unido mostram que a GNN é capaz de produzir previsões de
custos mais precisas em tempo computacional aceitável. O uso desse estimator
na busca local impacta positivamente a qualidade das soluções, levando a
uma economia de 10,35 por cento no custo de entrega estimado em relação a função
Beardwood, que é comumente usada nesse cenários, e ganhos similares em
comparação com outros métodos de aproximação.
|
|||||||||||||
|