Título: | PARA CORRESPONDÊNCIA DE FORMAS BASEADO EM APRENDIZADO PROFUNDO EM MODELOS CAD 3D | ||||||||||||
Autor: |
LUCAS CARACAS DE FIGUEIREDO |
||||||||||||
Colaborador(es): | --- | ||||||||||||
Catalogação: | 11/NOV/2022 | Língua(s): | INGLÊS - ESTADOS UNIDOS |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=61206&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=61206&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.61206 | ||||||||||||
Resumo: | |||||||||||||
Modelos CAD 3D ricos em dados são essenciais durante os diferentes
estágios do ciclo de vida de projetos de engenharia. Devido à recente
popularização da metodologia Modelagem de Informação da Construção e
do uso de Gêmeos Digitais para a manufatura inteligente, a quantidade de
detalhes, o tamanho, e a complexidade desses modelos aumentaram significativamente.
Apesar desses modelos serem compostos de várias geometrias
repetidas, os softwares de projeto de plantas geralmente não proveem nenhuma
informação de instanciação. Trabalhos anteriores demonstraram que
removendo a redundância na representação dos modelos CAD 3D reduz significativamente
o armazenamento e requisição de memória deles, ao passo
que facilita otimizações de renderização. Este trabalho propõe um arcabouço
para correspondência de formas baseado em aprendizado profundo
que minimiza as informações redundantes de um modelo CAD 3D a esse
respeito. Nos apoiamos nos avanços recentes no processamento profundo de
nuvens de pontos, superando desvantagens de trabalhos anteriores, como
a forte dependencia da ordenação dos vértices e topologia das malhas de
triângulos. O arcabouço desenvolvido utiliza nuvens de pontos uniformemente
amostradas para identificar similaridades entre malhas em modelos
CAD 3D e computam uma matriz de transformação afim ótima para
instancia-las. Resultados em modelos CAD 3D reais demonstram o valor
do arcabouço proposto. O procedimento de registro de nuvem de pontos
desenvolvido atinge um erro de superfície menor, ao mesmo tempo que executa
mais rápido que abordagens anteriores. A abordagem supervisionada
de classificação desenvolvida antinge resultados equivalentes em comparação
com métodos limitados anteriores e os superou significativamente num
cenário de embaralhamento de vértices. Propomos também uma abordagem
auto-supervisionada que agrupa malhas semelhantes e supera a necessidade
de rotular explicitamente as geometrias no modelo CAD 3D. Este método
auto-supervisionado obtém resultados competitivos quando comparados às
abordagens anteriores, até mesmo superando-as em determinados cenários.
|
|||||||||||||
|