Título: | HABILITANDO ANOTAÇÕES DE DADOS AUTÔNOMOS: UMA ABORDAGEM DE APRENDIZADO POR REFORÇO COM HUMANO NO LOOP | ||||||||||||
Autor: |
LEONARDO CARDIA DA CRUZ |
||||||||||||
Colaborador(es): |
ALBERTO BARBOSA RAPOSO - Orientador CESAR AUGUSTO SIERRA FRANCO - Coorientador |
||||||||||||
Catalogação: | 10/NOV/2022 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=61195&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=61195&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.61195 | ||||||||||||
Resumo: | |||||||||||||
As técnicas de aprendizado profundo têm mostrado contribuições significativas em vários campos, incluindo a análise de imagens. A grande maioria
dos trabalhos em visão computacional concentra-se em propor e aplicar
novos modelos e algoritmos de aprendizado de máquina. Para tarefas de
aprendizado supervisionado, o desempenho dessas técnicas depende de uma
grande quantidade de dados de treinamento, bem como de dados rotulados. No entanto, a rotulagem é um processo caro e demorado. Uma recente
área de exploração são as reduções dos esforços na preparação de dados,
deixando-os sem inconsistências, ruídos, para que os modelos atuais possam obter um maior desempenho. Esse novo campo de estudo é chamado
de Data-Centric IA. Apresentamos uma nova abordagem baseada em Deep
Reinforcement Learning (DRL), cujo trabalho é voltado para a preparação
de um conjunto de dados em problemas de detecção de objetos, onde as anotações de caixas delimitadoras são feitas de modo autônomo e econômico.
Nossa abordagem consiste na criação de uma metodologia para treinamento
de um agente virtual a fim de rotular automaticamente os dados, a partir do
auxílio humano como professor desse agente. Implementamos o algoritmo
Deep Q-Network para criar o agente virtual e desenvolvemos uma abordagem de aconselhamento para facilitar a comunicação do humano professor
com o agente virtual estudante. Para completar nossa implementação, utilizamos o método de aprendizado ativo para selecionar casos onde o agente
possui uma maior incerteza, necessitando da intervenção humana no processo de anotação durante o treinamento. Nossa abordagem foi avaliada
e comparada com outros métodos de aprendizado por reforço e interação
humano-computador, em diversos conjuntos de dados, onde o agente virtual precisou criar novas anotações na forma de caixas delimitadoras. Os
resultados mostram que o emprego da nossa metodologia impacta positivamente para obtenção de novas anotações a partir de um conjunto de dados
com rótulos escassos, superando métodos existentes. Desse modo, apresentamos a contribuição no campo de Data-Centric IA, com o desenvolvimento
de uma metodologia de ensino para criação de uma abordagem autônoma
com aconselhamento humano para criar anotações econômicas a partir de
anotações escassas.
|
|||||||||||||
|