Título: | IDENTIFICAÇÃO DE HORIZONTES EM SÍSMICA USANDO REDE NEURAL CONVOLUCIONAL | ||||||||||||
Autor: |
MAYARA GOMES SILVA |
||||||||||||
Colaborador(es): |
MARCELO GATTASS - Orientador |
||||||||||||
Catalogação: | 07/NOV/2022 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=61112&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=61112&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.61112 | ||||||||||||
Resumo: | |||||||||||||
O petróleo e gás são importantes na economia mundial, utilizados
como matéria-prima em vários produtos. Para a extração desses produtos é
necessário realizar a caracterização dos reservatórios de hidrocarbonetos. A
partir dessa caracterização são extraídos um volume com dados sísmicos da
região de interesse. Esses dados são interpretados para identificação de várias
características, como a classificação de fácies sísmicas, horizontes, falhas, e gás.
A grande quantidade de dados do volume de sísmica, torna a interpretação
manual cada vez mais desafiadora. Muitos pesquisadores da área de interpretação sísmica tem investido em métodos utilizando redes neurais. As redes
neurais convolucionais (CNN) são muito utilizadas em problemas de visão
computacional, e obtém ótimos resultados em muitos problemas com dados
2D. O presente trabalho tem como objetivo a aplicação de redes neurais convolucionais no mapeamento supervisionado de horizontes sísmicos. Avaliamos
nossa proposta usando o bloco F3 com as anotações de fácies sísmicas. Os dados
foram utilizados baseados em modelo de seção e patches. Na previsão de horizonte foram avaliadas as arquiteturas da ResUnet e DC-Unet. Como função de
perda foram analisadas a Generalized Dice e a perda Focal Tversky. O método
mostrou resultados promissores com a ResUnet e função de perda Focal Tversky, nos dados baseados em patches de 128x128, alcançando aproximadamente
56 por cento na métrica Dice. A implementação completa e as redes treinadas estão
disponíveis em https://github.com/mayaragomys/seismic_horizons.
|
|||||||||||||
|