Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: SIMULAÇÃO ESTOCÁSTICA CONJUNTA DE ENERGIAS RENOVÁVEIS
Autor: GUSTAVO DE ANDRADE MELO
Colaborador(es): FERNANDO LUIZ CYRINO OLIVEIRA - Orientador
PAULA MEDINA MACAIRA LOURO - Coorientador
Catalogação: 27/SET/2022 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=60660&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=60660&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.60660
Resumo:
O aumento da participação de fontes de energias renováveis variáveis (ERVs) na matriz elétrica do Brasil traz diversos desafios ao planejamento e à operação do Sistema Elétrico Brasileiro (SEB), devido à estocasticidade das ERVs. Tais desafios envolvem a modelagem e simulação dos processos intermitentes de geração e, dessa forma, um volume considerável de pesquisas tem sido direcionado ao tema. Nesse contexto, um tópico de crescente importância na literatura relaciona-se ao desenvolvimento de metodologias para simulação estocástica conjunta de recursos intermitentes com características complementares, como, por exemplo, as fontes eólica e solar. Visando contribuir com essa temática, este trabalho propõe melhorias a um modelo de simulação já estabelecido na literatura, avaliando sua aplicabilidade a partir de dados do Nordeste brasileiro. A metodologia proposta baseia-se em discretização das séries temporais de energia aplicando a técnica de machine learning k-means, construção de matrizes de transição de estados com base nos clusters identificados e simulação de Monte Carlo para obtenção dos cenários. As séries sintéticas obtidas são comparadas aos resultados gerados pelo modelo já estabelecido na literatura a partir de técnicas estatísticas. Quanto ao alcance dos objetivos da pesquisa, a modelagem proposta se mostrou mais eficiente, gerando cenários que reproduziram satisfatoriamente todas as características dos dados históricos avaliadas.
Descrição: Arquivo:   
NA ÍNTEGRA PDF