Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: ENSAIOS SOBRE NOWCASTING COM DADOS EM ALTA DIMENSÃO
Autor: HENRIQUE FERNANDES PIRES
Colaborador(es): MARCELO CUNHA MEDEIROS - Orientador
Catalogação: 02/JUN/2022 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=59313&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=59313&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.59313
Resumo:
Em economia, Nowcasting é a previsão do presente, do passado recente ou mesmo a previsão do futuro muito próximo de um determinado indicador. Geralmente, um modelo nowcast é útil quando o valor de uma variável de interesse é disponibilizado com um atraso significativo em relação ao seu período de referência e/ou sua realização inicial é notavelmente revisada ao longo do tempo, se estabilizando somente após um tempo. Nesta tese, desenvolvemos e analisamos vários métodos de Nowcasting usando dados de alta dimensão (big data) em diferentes contextos: desde a previsão de séries econômicas até o nowcast de óbitos pela COVID-19. Em um de nossos estudos, comparamos o desempenho de diferentes algoritmos de Machine Learning com modelos mais naive na previsão de muitas variáveis econômicas em tempo real e mostramos que, na maioria das vezes, o Machine Learning supera os modelos de benchmark. Já no restante dos nossos exercícios, combinamos várias técnicas de nowcasting com um grande conjunto de dados (incluindo variáveis de alta frequência, como o Google Trends) para rastrear a pandemia no Brasil, mostrando que fomos capazes de antecipar os números reais de mortes e casos muito antes de estarem disponíveis oficialmente para todos.
Descrição: Arquivo:   
NA ÍNTEGRA PDF