Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: CARACTERIZAÇÃO DE COMPÓSITOS CIMENTÍCIOS REFORÇADOS COM FIBRAS: APRENDIZAGEM PROFUNDA, MICROTC DE RAIO X INSITU, CORRELAÇÃO DIGITAL DE VOLUME
Autor: RENATA LORENZONI
Colaborador(es): SIDNEI PACIORNIK - Orientador
FLAVIO DE ANDRADE SILVA - Coorientador
Catalogação: 29/DEZ/2021 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=56833&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=56833&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.56833
Resumo:
entendimento do macro comportamento dos materiais, este trabalho apresenta soluções inovadoras para a análise de imagens 3D obtidas por microtomografia computadorizada de raios-X (microCT). O material estudado conhecido pelo termo em inglês “strain-hardening cement-based composites” ou pela abreviação SHCC é um compósito cimentício reforçado com fibras que atinge deformações significativas através da formação de múltiplas fissuras, estabelecendo um material cimentício com característica pseudo-dúctil. O primeiro desafio deste trabalho foi reconhecer e quantificar as fases constituintes nas imagens 3D de SHCC obtidas por microCT. Materiais com estruturas complexas podem apresentar imagens em que as fases internas não podem ser distinguidas pela técnica de limiarização clássica, exigindo o uso de outra técnica como a segmentação por Deep Learning (DL). Portanto, este trabalho utilizou DL como solução para esta tarefa. Desta forma, as características de cada fases puderam ser correlacionadas ao comportamento mecânico macro do material em ensaios de microCT in-situ. Outro método moderno de análise de imagens 3D utilizado foi a correlação digital de volume (em inglês, digital volume correlation - DVC). O DVC é uma técnica que estima o campo de deformação sobre todo o volume da amostra, correlacionando as imagens 3D nos estados descarregado e carregado. Assim, as imagens obtidas nos ensaios de tração e compressão in-situ puderam ter seus deslocamentos internos medidos e deformações calculadas. Em síntese, este trabalho trouxe avanços ao campo do processamento digital e análise de imagens 3D, aplicadas a materiais cimentícios, mas que também podem se adaptar à análise de diversos materiais.
Descrição: Arquivo:   
NA ÍNTEGRA PDF