Título: | CICLOS HETERODIMENSIONAIS DE CO- ÍNDICE DOIS E BLENDERS SIMBÓLICOS | |||||||
Autor: |
YURI KI |
|||||||
Colaborador(es): |
LORENZO JUSTINIANO DIAZ CASADO - Orientador |
|||||||
Catalogação: | 23/DEZ/2021 | Língua(s): | INGLÊS - ESTADOS UNIDOS |
|||||
Tipo: | TEXTO | Subtipo: | TESE | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=56754&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=56754&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.56754 | |||||||
Resumo: | ||||||||
Na primeira parte da tese, consideramos difeomorfismos com ciclos
heterodimensionais associados a um par de selas P e Q de co-índice dois.
Provamos que difeomorfismos com ciclos que possuem no mínimo um par
de autovalores centrais do ciclo não real geram ciclos heterodimensionais
robustos. Além disso, quando os autovalores centrais são não-reais, os ciclos
robustos estão associados as continuações das selas iniciais (ou seja, os
ciclos podem ser estabilizados). Na segunda parte deste trabalho estudamos
mapas produto cruzado sobre aplicações deslocamento (do tipo Bernoulli)
com fibras contrativas e dependência Holder nos pontos da base. Provamos
que sistemas que satisfazem a propriedade de cobertura exibem blender
simbólicos. Estes blenders são generalizações do blender usual cuja principal
característica é que suas direções centrais podem ter qualquer dimensão
d maior ou igual que 1.
|
||||||||