Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: ANÁLISE ESTOCÁSTICA DA PROPAGAÇÃO DE UMA DOENÇA DE CARÁTER EPIDEMIOLÓGICO
Autor: BEATRIZ DE REZENDE BARCELLOS BORGES
Colaborador(es): ROBERTA DE QUEIROZ LIMA - Orientador
RUBENS SAMPAIO FILHO - Coorientador
Catalogação: 29/NOV/2021 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=56215&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=56215&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.56215
Resumo:
Este trabalho analisa a propagação de uma doença epidemiológica com uma abordagem estocástica. Na análise, o número de indivíduos que cada membro infectado da população pode infectar é modelado como uma variável aleatória e o número de indivíduos infectados ao longo do tempo é modelado como um processo estocástico de ramificação. O foco do trabalho é caracterizar a influência do modelo probabilístico da variável aleatória que modela o contágio entre indivíduos na disseminação da doença e na probabilidade de extinção, e analisar a influência de uma vacinação em massa no controle da propagação da doença. A comparação é feita com base em histogramas e estatísticas amostrais do número de indivíduos infectados ao longo do tempo, como média e variância. Os modelos estatísticos referentes à parte que trata de uma população não vacinada são calculados usando simulações de Monte Carlo para 3 diferentes famílias de variáveis aleatórias: binomial, geométrica-1 e geométrica-0. Para cada família, 21 distribuições diferentes foram selecionadas e, para cada distribuição, 4000 simulações do processo de ramificação foram computadas. Os modelos estatísticos referentes a uma população parcialmente vacinada foram calculados usando simulações de Monte Carlo para a família de variável aleatória binomial. Para essa família, 21 distribuições diferentes foram selecionadas e, para cada uma delas foram escolhidas 6 diferentes percentagens de população vacinada. Para cada percentagem, foram analisadas vacinas com 4 diferentes eficácias. No total, foram realizadas 2.2 milhões de simulações, caracterizando o problema como big data.
Descrição: Arquivo:   
NA ÍNTEGRA PDF