Título: | AGRUPAMENTO FUZZY APLICADO À INTEGRAÇÃO DE DADOS MULTI-ÔMICOS | ||||||||||||
Autor: |
SARAH HANNAH LUCIUS LACERDA DE GOES TELLES CARVALHO ALVES |
||||||||||||
Colaborador(es): |
MARLEY MARIA BERNARDES REBUZZI VELLASCO - Orientador KARLA TEREZA FIGUEIREDO LEITE - Coorientador MARIANA LIMA BORONI MARTINS - Coorientador |
||||||||||||
Catalogação: | 05/OUT/2021 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=55213&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=55213&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.55213 | ||||||||||||
Resumo: | |||||||||||||
Os avanços nas tecnologias de obtenção de dados multi-ômicos têm disponibilizado diferentes níveis de informação molecular que aumentam progressivamente em volume e variedade. Neste estudo, propõem-se uma metodologia de integração de dados clínicos e multi-ômicos, com o objetivo de identificar subtipos de câncer por agrupamento fuzzy, representando assim as gradações entre os diferentes perfis moleculares. Uma melhor caracterização de tumores em subtipos moleculares pode contribuir para uma medicina mais
personalizada e assertiva. Os conjuntos de dados ômicos a serem integrados são definidos utilizando um classificador com classe-alvo definida por resultados da literatura. Na sequência, é realizado o pré-processamento dos conjuntos de dados para reduzir a alta dimensionalidade. Os dados selecionados são
integrados e em seguida agrupados. Optou-se pelo algoritmo fuzzy C-means pela sua capacidade de considerar a possibilidade dos pacientes terem características de diferentes grupos, o que não é possível com métodos clássicos de agrupamento. Como estudo de caso, utilizou-se dados de câncer colorretal
(CCR). O CCR tem a quarta maior incidência na população mundial e a terceira maior no Brasil. Foram extraídos dados de metilação, expressão de miRNA e mRNA do portal do projeto The Cancer Genome Atlas (TCGA). Observou-se que a adição dos dados de expressão de miRNA e metilação a um classificador de expressão de mRNA da literatura aumentou a acurácia deste em 5 pontos percentuais. Assim, foram usados dados de metilação, expressão de miRNA e mRNA neste trabalho. Os atributos de cada conjunto de dados foram selecionados, obtendo-se redução significativa do número de atributos. A identificação dos grupos foi realizada com o algoritmo fuzzy C-means. A variação dos hiperparâmetros deste algoritmo, número de grupos e parâmetro de fuzzificação, permitiu a escolha da combinação de melhor desempenho. A escolha da melhor configuração considerou o efeito da variação dos parâmetros nas características biológicas, em especial na sobrevida global dos pacientes. Observou-se que o agrupamento gerado permitiu identificar que as amostras consideradas não agrupadas têm características biológicas compartilhadas entre grupos de diferentes prognósticos. Os resultados obtidos com a combinação de dados clínicos e ômicos mostraram-se promissores para melhor predizer o fenótipo.
|
|||||||||||||
|