Título: | EXISTÊNCIA E REGULARIDADE DE SOLUÇÕES: MODELOS NÃO LOCAIS E NÃO LINEARES | ||||||||||||
Autor: |
EDISON FAUSTO CUBA HUAMANI |
||||||||||||
Colaborador(es): |
EDGARD ALMEIDA PIMENTEL - Orientador RICARDO JOSE ALONSO PLATA - Coorientador |
||||||||||||
Catalogação: | 14/SET/2021 | Língua(s): | INGLÊS - ESTADOS UNIDOS |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=54684&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=54684&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.54684 | ||||||||||||
Resumo: | |||||||||||||
Estudamos duas classes de equações diferenciais parciais, nomeadamente:
uma equação de transferência radiativa e uma equação do calor
duplamente não-linear. O primeiro modelo envolve uma equação não-local,
na presença de um operador de espalhamento. Estuda-se a boa colocação do problema no semi-plano, no regime peaked. Prova-se um lema de averaging,
que produz regularidade interior para o problema, além de regularização
fracionária para as derivadas temporais da solução. O segundo conjunto
de resultados da tese trata de uma equação de Trudinger com graus de
não-linearidade distintos. Aproxima-se este problema pela p-equação do calor
e importa-se regularidade da última para a primeira. Como consequência,
mostra-se um resultado de regularidade melhorada no contexto não homogêneo.
|
|||||||||||||
|