Título: | SÍNTESE AUTOMATIZADA DE ÁRVORES DE DECISÃO ÓTIMAS PARA PEQUENOS PROBLEMAS DE OTIMIZAÇÃO COMBINATÓRIA | ||||||||||||
Autor: |
CLEBER OLIVEIRA DAMASCENO |
||||||||||||
Colaborador(es): |
THIBAUT VICTOR GASTON VIDAL - Orientador EDUARDO UCHOA BARBOZA - Coorientador |
||||||||||||
Catalogação: | 24/AGO/2021 | Língua(s): | INGLÊS - ESTADOS UNIDOS |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=54349&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=54349&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.54349 | ||||||||||||
Resumo: | |||||||||||||
A análise de complexidade clássica para problemas NP-difíceis é geralmente
orientada para cenários de pior caso, considerando apenas o comportamento
assintótico. No entanto, existem algoritmos práticos com execução em um tempo razoável para muitos problemas clássicos. Além disso, há evidências que apontam para algoritmos polinomiais no modelo de árvore de decisão linear para resolver esses problemas, embora não muito explorados. Neste trabalho, exploramos esses resultados teóricos anteriores. Mostramos que a solução ótima para problemas combinatórios 0-1 pode ser encontrada reduzindo esses problemas para uma Busca por Vizinho Mais Próximo sobre o conjunto de vértices de Voronoi correspondentes. Utilizamos os hiperplanos que delimitam essas regiões para gerar sistematicamente uma árvore de decisão que repetidamente divide o espaço até que possa separar todas as soluções, garantindo uma resposta ótima. Fazemos experimentos para testar os limites de tamanho para os quais podemos construir essas árvores para os casos do 0-1 knapsack, weighted minimum cut e symmetric traveling salesman. Conseguimos encontrar as árvores desses problemas com tamanhos até 10, 5 e 6, respectivamente. Obtemos também as relações de adjacência completas para os esqueletos dos politopos do knapsack
e do traveling salesman até os tamanhos 10 e 7. Nossa abordagem supera
consistentemente o método de enumeração e os métodos baseline para o weighted
minimum cut e symmetric traveling salesman, fornecendo soluções ótimas em
microssegundos.
|
|||||||||||||
|