Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: UMA ABORDAGEM BASEADA NO APRENDIZADO DE MÁQUINA INTERATIVO E INTERAÇÃO NATURAL PARA APOIO À REABILITAÇÃO FÍSICA
Autor: JESSICA MARGARITA PALOMARES PECHO
Colaborador(es): ALBERTO BARBOSA RAPOSO - Orientador
Catalogação: 10/AGO/2021 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=54139&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=54139&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.54139
Resumo:
A fisioterapia visa melhorar a funcionalidade física das pessoas, procurando atenuar as incapacidades causadas por alguma lesão, distúrbio ou doença. Nesse contexto, diversas tecnologias computacionais têm sido desenvolvidas com o intuito de apoiar o processo de reabilitação, como as tecnologias adaptáveis para o usuário final. Essas tecnologias possibilitam ao fisioterapeuta adequar aplicações e criarem atividades com características personalizadas de acordo com as preferências e necessidades de cada paciente. Nesta tese é proposta uma abordagem de baixo custo baseada no aprendizado de máquina interativo (iML - Interactive Machine Learning) que visa auxiliar os fisioterapeutas a criarem atividades personalizadas para seus pacientes de forma fácil e sem a necessidade de codificação de software, a partir de apenas alguns exemplos em vídeo RGB (capturadas por uma câmera de vídeo digital) Para tal, aproveitamos a estimativa de pose baseada em aprendizado profundo para rastrear, em tempo real, as articulações-chave do corpo humano a partir de dados da imagem. Esses dados são processados como séries temporais por meio do algoritmo Dynamic Time Warping em conjunto com com o algoritmo K-Nearest Neighbors para criar um modelo de aprendizado de máquina. Adicionalmente, usamos um algoritmo de detecção de anomalias com o intuito de avaliar automaticamente os movimentos. A arquitetura de nossa abordagem possui dois módulos: um para o fisioterapeuta apresentar exemplos personalizados a partir dos quais o sistema cria um modelo para reconhecer esses movimentos; outro para o paciente executar os movimentos personalizados enquanto o sistema avalia o paciente. Avaliamos a usabilidade de nosso sistema com fisioterapeutas de cinco clínicas de reabilitação. Além disso, especialistas avaliaram clinicamente nosso modelo de aprendizado de máquina. Os resultados indicam que a nossa abordagem contribui para avaliar automaticamente os movimentos dos pacientes sem monitoramento direto do fisioterapeuta, além de reduzir o tempo necessário do especialista para treinar um sistema adaptável.
Descrição: Arquivo:   
NA ÍNTEGRA PDF